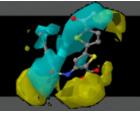
SYNTHESIS OF NEW SUBTYPE SELECTIVE INHIBITORS OF THE GABA TRANSPORTERS DERIVED FROM SNAP-5114

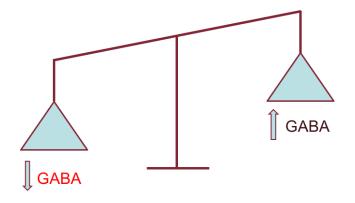

Facoltà di Farmacia e Medicina Corso di Laurea in Chimica e Tecnologia Farmaceutiche Tesi Sperimentale in Chimica Farmaceutica a.a. 2014/2015

Laureanda: Davia Prischich

Matricola: 1245037

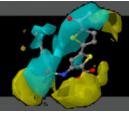
Relatore: Prof. Rino Ragno

Correlatore: Prof. Dr. K. T. Wanner

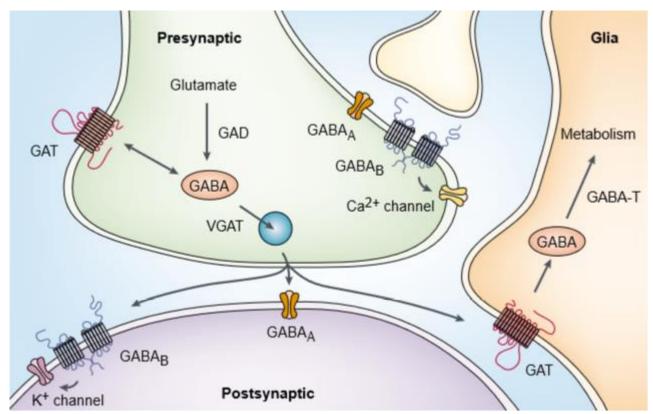


Neurological disorders

DISORDERS ASSOCIATED TO DISFUNCTIONS OF THE INHIBITORY NEUROTRANSMISSION

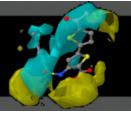

- **Epilepsy**
- Alzheimer's disease
- 3. Neuropathic pain

- Huntington's Chorea
- Schizophrenia 5.
- 6. Anxiety and depression



GABAergic Neurotransmission

γ-aminobutyric acid


is the main inhibitory
neurotransmitter in
the mammalian central
nervous system

Representation of the GABAergic synapse (Owens & Kriegstein, 2002)

Reduction of neuronal excitability is mediated by activation of both ionotropic (GABA_A and GABA_C) and metabotropic (GABA_B) receptors.

GABAergic Neurotransmission

'O ENHANCE GABAERGIC NEUROTRANSMISSION

- GABA_A receptors agonists
- GABA_A positiv allosteric modulators
- **GABA** analogues (GAD modulators)
- **GABA-T** inhibitors

5. GAT in	hibitors				—	Tiagabine
GABA trans	porters nor	Inhibits neuronal				
Rat	rGAT-1	rBGT-1	rGAT-2	rGAT-3	intra	acellular uptak
Human	hGAT-1	hBGT-1	hGAT-2	hGAT-3		

mGAT3

mGAT4

Barbiturates

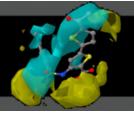
Benzodiazepines

Gabapentin

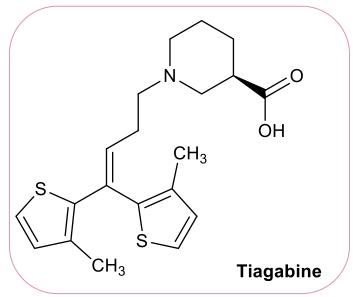
Vigabatrin

and glial ke of GABA

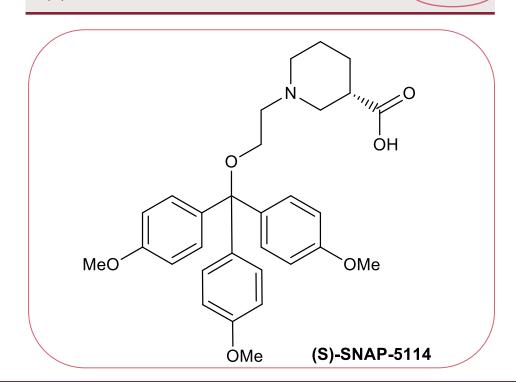
↑ synaptic GABA []


Mouse

mGAT1

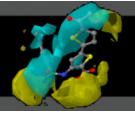

mGAT2

mGAT Selective Inhibitors

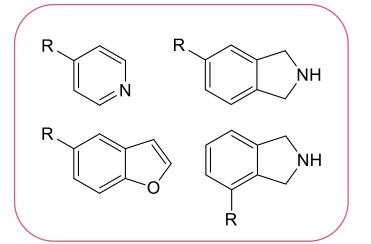


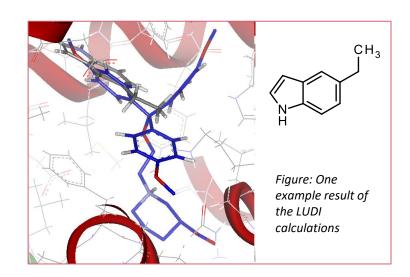
Side effects:

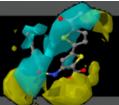
- Dizziness
- Asthenia
- Nervousness
- Tremor


- Diarrhea
- Depression
- Exacerbation
 - of absence
 - seizures

GABA uptake inhibition IC ₅₀ (μm)								
	mGAT1	mGAT2	mGAT3	mGAT4				
Tiagabine	0.11	>100	>100	800				
(S)-SNAP-5114	388	140	21 (5				






New SNAP-5114 Analogues

BY WWW.

SYNTHETIC PLAN TO SNAP-5114 ANALOGUES

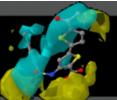
Method A

$$R_1$$
 OR

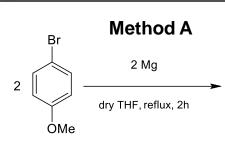
OH

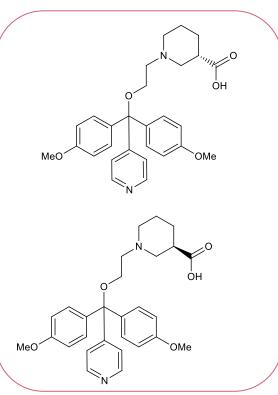
Method B

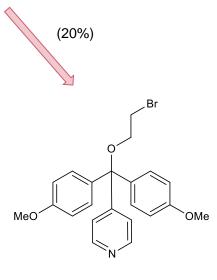
SYNTHESIS OF THE

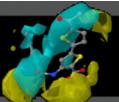

SUBSTITUTED TRIARYL

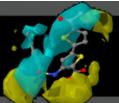
ALCOHOLS FROM


GRIGNARD REAGENTS



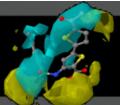



BY WWW.



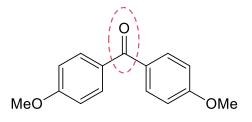
SYNTHESIS OF 5-BROMO-BENZOFURAN

GENERATION OF THE BENZOFURAN-5-YL 3^a ALCOHOL



PURIFICATION OF THE BENZOFURAN SUBSTITUTED ALCOHOL

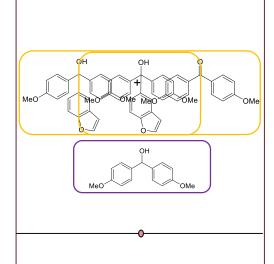
- 1. Optimization of reaction conditions
 - a) Lower temperature to diminish side products formation
 - b) Attempt at using a different solvent
 - c) Benzofuran magnesium bromide in excess compared to the equivalents of ketone substrate
- 2. Crude product purification through sequential MPLC runs
- 3. Crystallization
- 4. Selective reduction of unreacted ketone substrate



SELECTIVE REDUCTION OF UNREACTED KETONE SUBSTRATE

NaBH₄, EtOH/THF

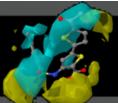
0°C - rt, 12 h


+

In conclusion:

possibility to use a combination of methods to reach the triaryl alcohol in sufficient amount and purity

TLC plate

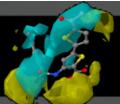

Isohexan:EtOAc (8:2)

by www.NGMLD.#

SYNTHETIC PLAN TO GAIN

5-BROMO-ISOINDOLINE

AND N-BENZYL-5-BROMO-


ISOINDOLINE

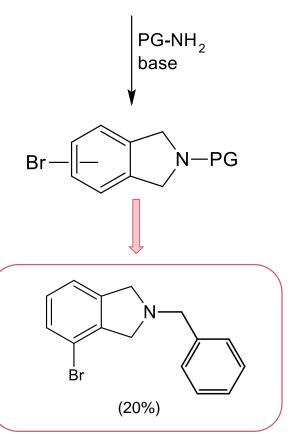
N-benzyl 5-bromo phthalimide reduction:

- a) 1 M Borane THF complex, THF, reflux, 18 h
- **b)** 1 M LiAlH₄ in THF, 0° C rt, 18h

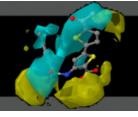
SYNTHETIC PLAN TO GAIN

 $Br \xrightarrow{||} Br \xrightarrow{||} Br \xrightarrow{||} Br$

N-BENZYL-4-BROMO-

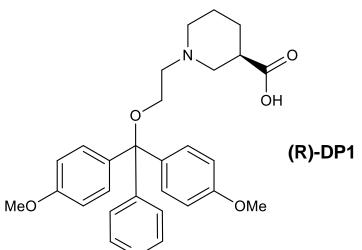

ISOINDOLINE

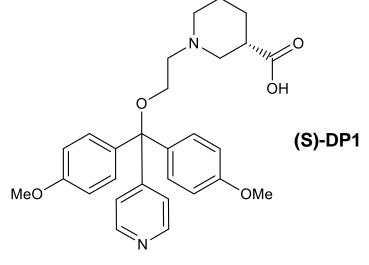
Advantages:


- · Only two synthetic steps
- More flexible approach appliable to gain both
 4- and 5-bromoisoindoline protected with
 different PGs

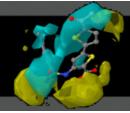
Drawbacks:

- Higher cost of the starting material
- Low yield (20%)





Biological evaluation



GABA uptake inhibition IC ₅₀ (μm)								
	mGAT1	mGAT2	mGAT3	mGAT4				
Tiagabine	0.11	>100	>100	800				
(S)-SNAP-5114	388	140	21	5				
(R)-DP1								
(S)-DP1								

Thanks for the attention

