Py-Pharm: An Open-Source Pharmacophore Based Virtual Screening Package Written in Python

Facolta di Farmacia e Medicina, Ingegneria dell'informazione, informatica e statistica, Medicina e Odontoiatria, Scienze Matematiche, Fisiche e Naturali

Corso di Laurea in Bioinformatica

Laureando: Julian Elijah Politsch Matricula: 1831710

Relatore: prof. Rino Ragno

"A pharmacophore is the ensemble of steric and electric features that are necessary to **insure optimal supramolecular interactions** with a **specific biological target** and to trigger (or block) a biological response" -IUPAC

conformational models

ligand-based model

In CADD pharmacophore match indicates a potential hit compound

3 Apienza

A Shared Pharmacophore – Minimum set of functional features shared by active ligands

A Merged Pharmacophore – All functional features of active ligands

Scope of Thesis

Primary Goals:

1. Design an open-source pharmacophore generation program for 3D-QSAR web server comparable to industry standard LigandScout

2. Create a virtual screening platform based on pharmacophore match theory with high accuracy

Workflow Overview

Creating Shared Pharmacophore

Virtual Screening

7/3/2024

Completely customizable for knowledgeable user with example datasets

Input for Py-Pharm:

SMILES = Simplified Molecular-Input Line-Entry System

7/3/2024

7

SAPIENZA

D

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Preprocessing

1. Selection of highly active molecules

Preprocessing

7/3/2024

- 1. Selection of highly active molecules
- 2. Sanitize SMILES (Duplicates, Salts, etc.)
- 3. Protonation at desired pH
- Reference Selection (Structure to align all other probes to)

Preprocessing

- 1. Selection of highly active molecules
- 2. Sanitize SMILES (Duplicates, Salts, etc.)
- 3. Protonation at desired pH
- 4. Reference Selection
- 5. MMFF Conformational Analysis

APIENZA

APIENZA

- 1. Features are ranked by highest conservation
- 2. User chooses desired number of features

	AROM1	HDON1	HDON2	HDON3	HACC1	LIP01	POSC1
morphine.0	1	1	1	1	1	1	1
meperidine.5	1	1	0	0	1	1	1
methadone.26	1	1	0	0	0	1	1
oxycodone.8	1	1	0	0	1	1	1
fentanyl.20	1	1	0	0	0	1	1
pentazocine.28	1	1	1	0	0	1	1
tramadol.27	1	1	0	0	0	1	1
ketobemidone.24	1	1	0	0	0	1	1
diphenoxylate.12	1	1	0	0	1	1	1
Sum	9	9	2	1	4	9	9

12

Final Model Creation

- 1. Features are ranked by highest conservation
- 2. User chooses desired number of features
- 3. Centroids represent shared features

13

Workflow Overview

Creating Shared Pharmacophore

Virtual Screening

Hyperparameters

- Molecules of known activity are subset into Train (70%) and Test (30%)
- 2. Hyperparameters optimized based by grid search

'C': np.arange(0.1, 1.5, 0.2), 'fit_intercept': [True, False], 'solver': ['newton-cg', 'saga'], "multi_class" : ['auto', 'ovr', 'multinomial']

parameters_rf = {

"n_estimators": np.arange(10, 500, 50),
"criterion" : ["gini", "entropy"],

parameters_knn = {

'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'],
'n_neighbors': np.arange(1,80, 4),
'weights': ['uniform', 'distance']

}

Training Machine Learning

- Molecules of known activity are subset into Train
 (70%) and Test (30%)
- 2. Hyperparameters optimized based by grid search
- Combinational soft voting to choose best methods between
 - Logistic Regression
 - Random Forest
 - K Nearest Neighbors

```
clf1 = KNeighborsClassifier(n_jobs=8, n_neighbors=1)
clf2 = rf_params
clf3 = knn_params
X = training_mat.drop("Active", axis=1)
y = training_mat["Active"]
scaler = StandardScaler()
scaler = scaler.fit(X)
X = scaler.transform(X)
score_test_set_scaled = scaler.transform(score_test_set)
eclf1 = VotingClassifier(estimators=[
    ('rf', clf2), ('knn', clf3)], voting='hard', n_jobs=8)
eclf1 = eclf1.fit(X, y)
eclf2 = VotingClassifier(estimators=[
    ('rf', clf2), ('knn', clf3)], voting='soft', n_jobs=8)
eclf2 = eclf2.fit(X, y)
clf1 = clf1.fit(X, y)
clf2 = clf2.fit(X, y)
clf3 = clf3.fit(X, y)
```


137

Case Study of Era: Retrospective Analysis

- 17 most active compounds (pIC₅₀ > 9) for Shared
- 20685 inactive decoys (Negative Test)
- 382 active compounds (Positive Test)
- 100 conformations generated

Indones. J. Chem., 2021, 21 (1), 137 - 147

Ligand Based Pharmacophore Modeling, Virtual Screening, and Molecular Docking Studies of Asymmetrical Hexahydro-2H-Indazole Analogs of Curcumin (AIACs) to Discover Novel Estrogen Receptors Alpha (ΕRα) Inhibitor

Hariyanti¹, Kusmardi², Arry Yanuar³, and Hayun^{3,*}

Decoys: similar physico-chemical properties but dissimilar 2-D topology.

Fig 2. Pharmacophore (a) 2D and (b) 3D models of E4D600 obtained by the LigandScout 4.2 software

Py-Pharm use's Hybrid Points because Aromatic and Hydrophobic regions occure together

Publication LB-Pharmacophore

Py-Pharm Shared Pharmacophore (PH4)

3	(YELLOW) HYDROPHOBIC INTERACTION (RED)	3
1	AROMATIC INTERACTION (GREEN)	3
0	POSITIVE CHARGE CENTER	0
1	(RED) HYDROGEN BOND ACCEPTOR	0
0	HYDROGEN BOND DONOR(BLUE)	1

Interestingly, the structure-based pharmacophore had a H-Bond Donor instead of acceptor, aligning with Py-Pharms model

Publication SB-Pharmacophore

Py-Pharm Shared Pharmacophore 6 points

3	(YELLOW) HYDROPHOBIC INTERACTION (RED)	3
1	AROMATIC INTERACTION (GREEN)	2
0	POSITIVE CHARGE CENTER (DARK BLUE)	1
1	(RED) HYDROGEN BOND ACCEPTOR	0
2	(GREEN) HYDROGEN BOND DONOR(BLUE)	1

Results

Primary Goals:

1. Design an open-source pharmacophore generation program for 3D-QSAR web server comparable to industry standard LigandScout

2. Create a virtual screening platform based on pharmacophore match theory with high accuracy

Results

Py-Pharm was used to screen the same set of decoys and active molecules as published: **Observations:** Lower sensitivity, Higher specificity and Accuracy

Measure	Publication	Py-Pharm	Derivations
Sensitivity	0.687	0.49	TPR = TP / (TP + FN)
Specificity	0.845	0.95	SPC = TN / (FP + TN)
Accuracy	0.84	0.94	ACC = (TP + TN) / (P + N)
FI Score	0.13	0.21	FI = 2TP / (2TP + FP + FN)
Matthews Correlation Coefficient	0.18	0.23	TP*TN - FP*FN / sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN))

Results

Results

1. Design an open-source pharmacophore generation program for 3D-QSAR web server comparable to industry standard LigandScout

2. Create a virtual screening platform based on pharmacophore match theory with high accuracy

Thank you!

Julian Politsch

Email: politsch.1831710@studenti.uniroma1.it

[1] Grant, J.A.; Gallardo, M.A.; Pickup, B.T. (1996) 'A fast method of molecular shape comparison: a simple application of a Gaussian description of molecular shape', *J. Comp. Chem.* **17**, 1653-1666 [wiley/19961115]

[2] Taminau, J.; Thijs, G.; De Winter, H. (2008) 'Pharao: pharmacophore alignment and optimization', *J. Mol. Graph. Model.* **27**, 161-169 [pubmed/18485770]

[3] Indonesian Journal of Chemistry (ISSN <u>1411-9420</u> / <u>2460-1578</u>) -Chemistry Department, Universitas Gadjah Mada, Indonesia.

