

Corso di Laurea in Scienze e Tecnologie dei Prodotti Erboristici tesi sperimentale in chimica farmaceutica e tossicologia i

Myrtus communis L.: ESTRAZIONE, ANALISI CHIMICA E ATTIVITÀ MICROBIOLOGICA DEGLI OLII ESSENZIALI

RELATORE Dr. RINO RAGNO

DESIREE GALOFORO Matricola: 316427

Myrtus communis L.: Habitat

È un componente tipico della macchia mediterranea presente soprattutto nelle stazioni più aride e calde delle coste italiane occidentali.

Myrtus communis L.

Famiglia: Mirtaceae

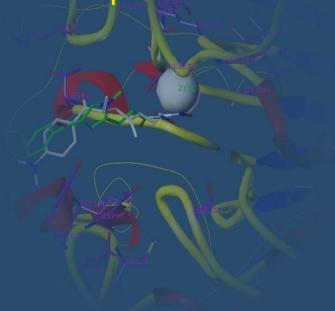
Nome volgare: mirto, mortella

Etimologia: il nome deriva da

Myrsene leggendaria

fanciulla greca uccisa da un giovane da lei battuto nei

giochi olimpici e trasformata


da Pallade in un arbusto di

mirto.

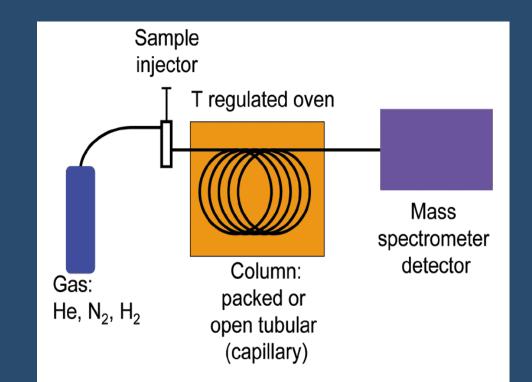
RACCOLTA

La raccolta di foglie è stata effettuata in località Roccaccia-Tarquinia, nell'agosto 2007 nel momento opportuno della giornata e nel suo tempo balsamico.

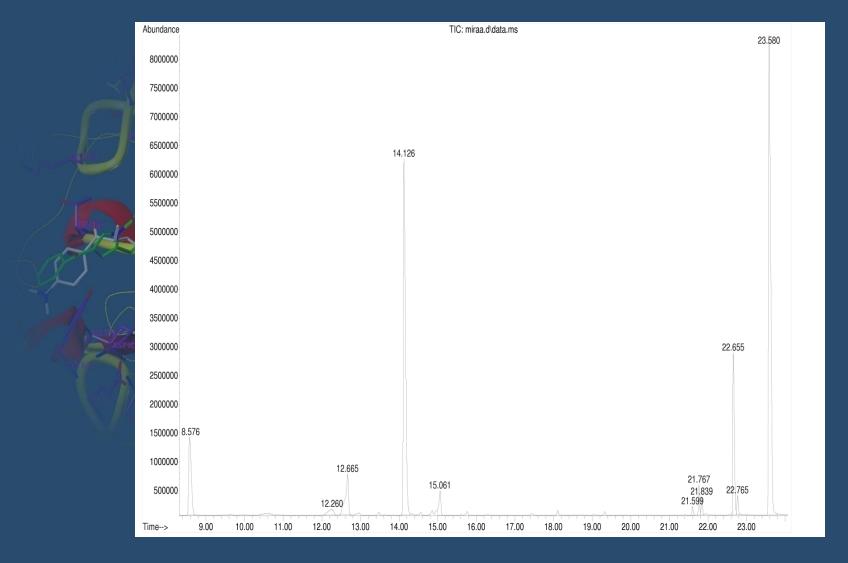
DISTILLAZIONE OLI ESSENZIALI

Fase di montaggio del distillatore

Fase finale: dopo circa 4 ore

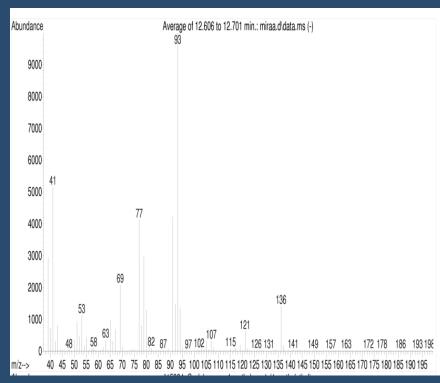

DISTILLAZIONE

	Parte della pianta	Data raccolta	Data estrazione	Quantità di materiale vegetale (g)	Peso o.e. estratti (g)	Resa in %
	Foglie	12-07-07	12-07-07	100	0,2	0,2
No. of Persons	Foglie	22-07-08	22-07-08	100	0,5	0,5

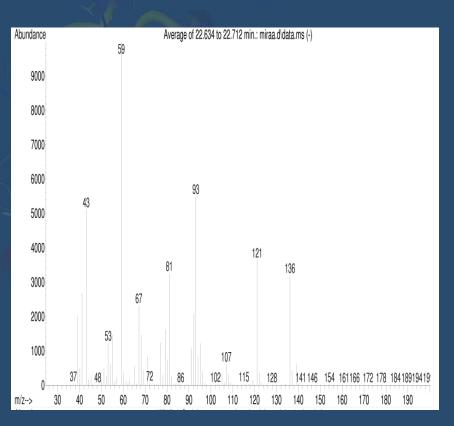

ANALISI CHIMICA

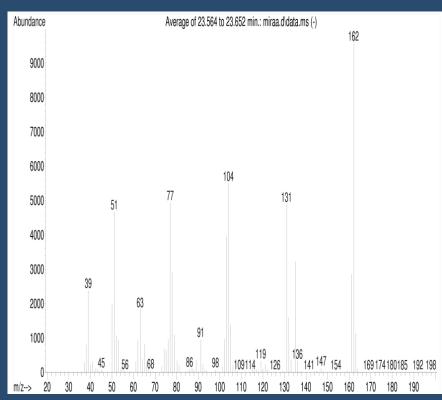
L'analisi chimica è stata effettuata mediante gascromatografia accoppiata a spettrometria di massa.

ANALISI CHIMICA



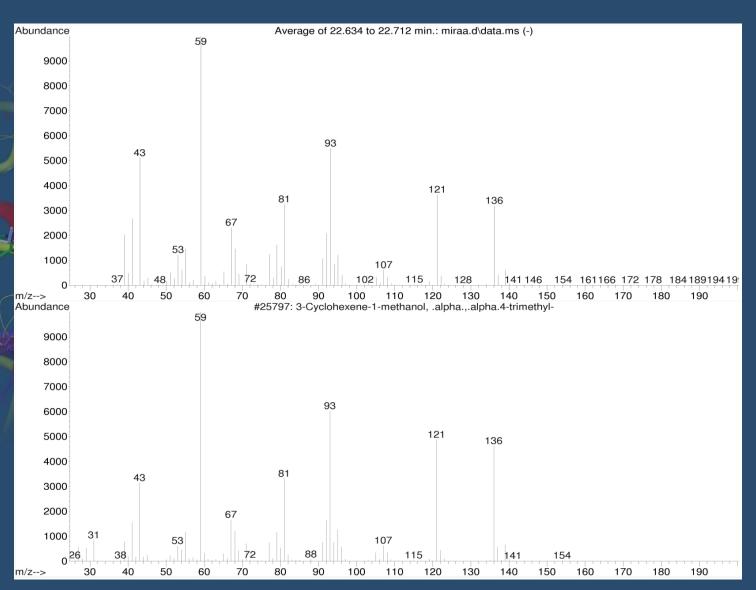
Spettro di massa dei maggiori componenti




1,8 cineolo

Cicloesene, 4-metilene-1-metiletil

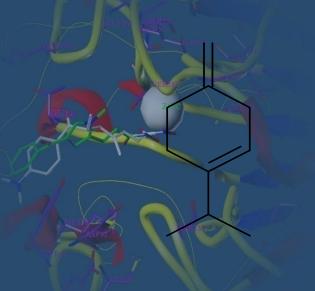
Spettro di massa dei maggiori componenti



α-terpineolo

1,3-benzodiozolo,5-2-propenil

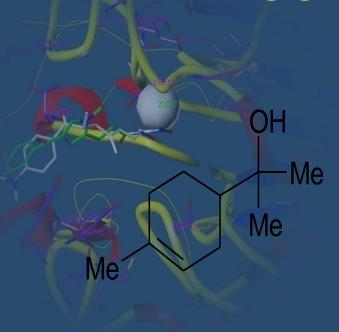
ANALISI CHIMICA



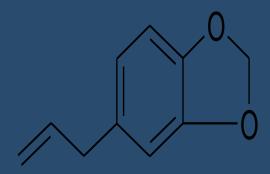
Composizione chimica O.E.

N	T.R:	Nome	%
1	12,26	B-pinene	4,36
2	12,66	Cicloesene,4-metilene 1-metiletil	17,1
3	zn 14,13	1,8cineolo	10,58
V	15,06	limonene	7,6
5	21,60	teerpinen 4-olo	1,3
6	21,77	terpinen 4-olo	4,62
7	21,84	p-menten-1-en-8-olo	2,97
8	22,65	α-terpineolo	33,5
9	22,76	p-menten-8-olo	3,8
10	23,58	1,3-benzodiozolo, 5-2propilene	14,29

FORMULE DI STRUTTURA DEI MAGGIORI COMPOSTI



Cicloesene, 4 metilene-1-metiletil


1,8 cineolo

FORMULE DI STRUTTURA DEI MAGGIORI COMPOSTI

α-terpineolo

1,3-benzodiozolo,5-2- propenil

Informazioni bibliografiche

olio del marocco

·a-pinene

•1,8-cineolo

•α-terpineolo

mirtenil acetato

10%,

43,1%,

3,9%

25%

l'olio essenziale dell' Iran

•α-pinene 29,1%

•limonene 21,5%

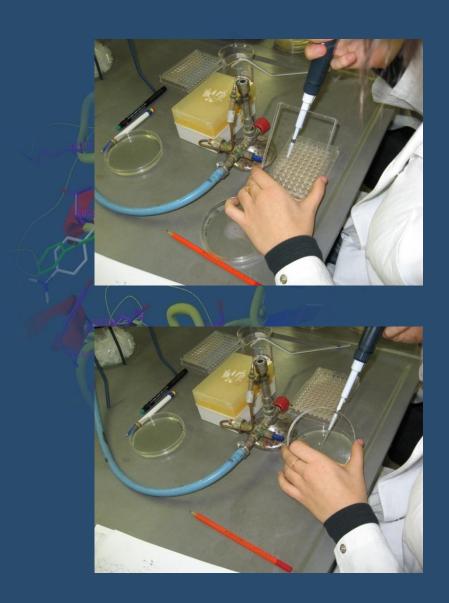
•Linalolo 10,4%

•1,8 cineolo 17,9%

- Attività antibatterica
- Attività antimicotica
- Attivita antiossidante

Analisi microbiologica

Candida albicans (ceppo)	Provenienza
CO ₂₃	Isolato clinico
AIDS6	Isolato clinico
AIDS37	Isolato clinico
AIDS68	Isolato clinico
ATCC 10231	Ceppo di laboratorio
ATCC 20891	Ceppo di laboratorio


Analisi microbiologica

Per la concentrazione minima inibente (MIC) si è utilizzato il metodo della microdiluizione

	campione	Concentrazione di olio essenziale (espressa in % v/v)
	1°	1,4
	2°	0,7
ASPOZ	3°	0,35
	4°	0,175
	5°	0,0875
	6°	0,0437
	7 °	0,0218
	8°	0,0109

Analisi microbiologica

ceppo	MIC (% v/v)	MFC (% v/v)
CO23	0,175	0,35
AIDS6	0,35	0,35
AIDS37	0,35	0,35
AIDS68	0,35	0,35
ATCC10231	0,35	0,35
ATCC20891	0,35	0,35

MIC: Minimum Inhibitory Concentration

MFC: Minimum Fungicidal Concetration

CONCLUSIONI

L'analisi GC/MS degli oli essenziali ha portato all'identificazione dei maggiori componenti volatili: α -terpineolo (33,5%), 1,3-benzodiozolo, 5-2-propenil (14,29%), 1,8 cineolo (10,58%), cicloesene, 4-metilene 1-metiletil (17,1%).

I risultati microbiologici ottenuti hanno evidenziato una buona attività inibente e fungicida dell'olio essenziale di *Myrtus communis L.* su diversi ceppi di *C. albicans* di diversa provenienza, dimostrando valori di tutto rispetto se confrontati a quelli dei normali farmaci antifungini.

Ulteriori approfondimenti sono in corso per determinare i meccanismi con i quali queste sostanze agiscono sui microrganismi patogeni come i funghi.