Sviluppo di modelli QSAR predittivi mediante l'uso estensivo di tecniche Machine Learning: Applicazione sugli inibitori della Lisina Istone Demetilasi 1 (KDM1A)

Facoltà di Farmacia e Medicina Corso di Laurea in Chimica e Tecnologia Farmaceutiche Tesi Sperimentale in Chimica Farmaceutica a.a. 2014/2015

Laureando: Alexandros Patsilinakos Matricola: 317021

Relatore: Prof. Rino Ragno

Chemical Space

"Space is big. You just won't believe how vastly, hugely, mind-bogglingly big it is". Douglas Adams

There are something like **10²² to 10²⁴ stars in the Universe**.¹

What about the "Chemical Universe"?

The total number of possible small organic molecules that populate "chemical space" has been estimated to exceed **10⁶⁰**.²

This is an amount so vast when compared to the number of such molecules we have made, or indeed could ever hope to make, that it might as well be infinite.²

1. http://www.esa.int/Our_Activities/Space_Science/Herschel/How_many_stars_are_there_in_the_Universe

2. Kirkpatrick, Peter, and Clare Ellis. "Chemical space." Nature 432.7019 (2004): 823.

Exploration of chemical space has so far been extremely limited.

 The largest current public database of molecules so far synthesized, PubChem, contains around 50 orders of magnitude fewer (~70 million)

by www.

• The Chemical Universe Database GDB-17 lists 166.4 billion molecules of 17 atoms or less, which is four order of magnitude more than the number of known molecules in that size range.

DATABASE	DESCRIPTION	SIZE
DrugBank	approved and investigational drugs	7593
SuperScent	scents from literature	2300
Flavornet	volatile compounds from literature	738
SuperSweet	carbohydrates and artificial sweeteners	642
BitterDB	bitter cpds from literature and Merck index	606
PubChem	NIH repository of molecules	~70M
ZINC	commercial small molecules	22 724 825
ZINC.FL	fragrance-like subset of ZINC	69 724
BindingDB	small molecules annotated with bioactivity data	453 657
ChEMBL	small molecules annotated with bioactivity data	1411 786
GDB-11	molecules of up to 11 atoms of C, N, O, and F	26 434 571
GDB-13	molecules of up to 13 atoms of C, N, O, S, and Cl	977 468 314
GDB-13.subset	simplicity-selected GDB-13 molecules	43 729 989
GDB-13.FL	fragrance-like subset of GDB-13	59482 898
GDB-17	molecules of up to 17 atoms of C, N, O, S, and halogens	166 443 860 262

How the enormous chemical space of over 10⁶⁰ conceivable compounds can be filtered to a manageable number that can be synthesized, purchased, and tested?

- Virtual screening (VS) is a computational technique used in drug discovery to search libraries of small molecules in order to identify those structures which are most likely to bind to a drug target, typically a protein receptor or enzyme.
- Thanks to the application of **Machine Learning** algorithms, the accuracy of the method has increased.

"Field of study that gives computers the ability to learn without being explicitly programmed" (1959 – Arthur Samuel)

- Evolved from the study of pattern recognition and computational learning theory in artificial intelligence.
- Explores the study and construction of algorithms that can learn from and make predictions on data.
- Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions, rather than following strictly static program instructions.

Machine learning tasks are typically classified into **two broad categories**, depending on the nature of the learning "signal" or "feedback" available to a learning system.

Supervised learning:

The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs.

Unsupervised learning:

The computer discovers hidden patterns in data.

Fare clic per modificare lo stile del titolo

Virtual Screening of Chemical Libraries

Screening chemical libraries

by www.

Domain

Predictive QSAR models

A

by www.

APIENZA

Molecular Descriptors Representation

by www.

0D: bond counts, molecular weight, atom counts

1D: fragment counts, H-Bond acc/don, Crippen, PSA, SMARTS

2D: topological descriptors (Balaban, Randic, Wiener, BCUT, kappa, chi)

3D: geometrical descriptors, surface properties, COMFA

4D: 3D coordinates + conformations

Fingerprint Representation

- Lots of types of fingerprints
- "Keyed" fingerprints indicate the presence or absence of a structural feature
- Length can vary from 166 to 4096 bits or more
- Fingerprints usually compared using the Tanimoto metric

by www.A.C.

Machine Learning
TechniquesSelection of
Models with High
Internal & External
AccuracyAssessment of
Applicability

Domain

Predictive QSAR models

Α

Regression metrics

explained_variance $(y, \hat{y}) = 1 - \frac{Var\{y - \hat{y}\}}{Var\{y\}}$ MAE $(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|.$

$$MSE(y, \hat{y}) = \frac{1}{n_{samples}} \quad \sum_{i=0}^{\cdot} \quad (y_i - \hat{y}_i)^2$$

$$R^{2}(y,\hat{y}) = 1 - \frac{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=0}^{n_{\text{samples}}-1} (y_{i} - \bar{y})^{2}}$$

Classification metrics

$$\frac{\frac{1}{p_{\text{samples}}}}{\text{accuracy}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} 1(\hat{y}_i = y_i)} \text{precision} = \frac{tp}{tp + fp}, \text{recall} = \frac{tp}{tp + fn}, \text{mcc} = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.$$

A

Models can fail due to chemical diversity of training & test sets (i.e. outside of applicability domain)

by www.

models

QSAR in Drug Discovery

Molecular Informatics

learn

Case Study: LSD1

Shi Y et al. Cell 2004, *119*, 941-53. Karytinos A et al. J Biol Chem. 2009, *284*, 17775-82.

LSD1 functions to demethylate H3K4me1/2. H3K9me1/2. and non-histone proteins including p53. E2F1 and DNMT1. LSD1 is present in different protein complexes. such as the HDAC/CoREST/REST complex and the Mi-2/nucleosome remodeling and deacetylase (NuRD) complex. and displays diverse functions.

Data Set Definition

Models Generation

			K	K-fold			Y-scrambling						External Validation		
Data Set	Method	q^2	r^2	SDEP	SDEC	Average q^2	Average r^2	Average SDEP	Average SDEC	$\begin{array}{c} \text{Maximum} \\ q^2 \end{array}$	Number of positive q^2	SDEP	AAEP	$r^2_{\rm pred}$	
Reversible	PLS	0.73	0.90	0.92	0.44	-0.65	0.48	1.60	0.91	0.02	1	0.45	0.36	0.90	
	KNN	0.89	0.95	0.80	0.35	-0.60	0.48	1.57	0.90	0.02	1	0.42	0.37	0.92	
	BR	0.89	0.96	0.93	0.28	-0.08	0.06	1.30	1.22	0.16	3	1.04	0.68	0.50	
	SVR	0.69	0.99	0.69	0.11	-0.45	0.78	1.50	0.57	0.14	2	0.78	0.63	0.70	
	GBR	0.74	0.98	0.79	0.14	-0.64	0.96	1.59	0.23	-0.03	0	0.37	0.35	0.94	
	RF	0.79	0.98	0.92	0.48	-0.34	0.77	1.44	0.60	0.16	8	0.63	0.52	0.90	
Covalent	PLS	0.82	0.88	0.75	0.46	-0.78	0.24	1.50	0.99	0.04	1	0.62	0.44	0.72	
	KNN	0.46	0.84	0.83	0.46	-0.53	0.50	1.40	0.81	0.02	0	0.87	0.53	0.49	
	BR	0.83	0.92	0.71	0.45	-0.07	0.06	1.17	0.11	0.11	4	1.16	0.87	0.23	
	SVR	0.79	0.99	0.78	0.11	-0.95	0.90	1.57	0.35	-0.11	0	1.17	0.93	0.19	
	GBR	0.67	0.99	0.82	0.05	-0.60	0.98	1.43	0.16	0.1	3	0.77	0.45	0.58	
	RF	0.56	0.88	0.91	0.37	-0.35	0.78	1.31	0.54	0.37	3	0.53	0.46	0.79	

Unified Data Set													
		K	K-fold				External Validation						
Method	q^2	r^2	SDEP	SDEC	Average q ²	Average r ²	Average SDEP	Average SDEC	$\begin{array}{c} \text{Maximum} \\ q^2 \end{array}$	Number of positive <i>q</i> ²	SDEP	AAEP	r ² pred
PLS	0.69	0.79	0.82	0.61	-0.36	0.29	1.42	1.03	0.01	1	0.89	0.67	0.69
KNN	0.69	0.82	0.88	0.56	-0.36	0.30	1.43	1.01	-0.10	0	0.97	0.66	0.42
BR	0.75	0.85	0.99	0.69	-0.03	0.04	1.24	1.20	0.07	5	1.58	0.85	0.17
SVR	0.77	0.99	0.74	0.11	-0.92	0.90	1.69	0.38	-0.11	0	1.06	0.95	0.34
GBR	0.77	0.99	0.77	0.10	-0.43	0.46	0.93	0.31	-0.06	0	0.74	0.59	0.65
RF	0.63	0.92	0.84	0.39	-0.04	0.03	1.29	1.21	0.02	4	0.69	0.52	0.73

 QSAR Models for Covalent and Reversible LSD1 Inhibitors have been built

- The Unified Model allows a fast selection of potential inhibitors regardless their mechanism of action.
- Selected molecules inspected for their chemical reactivity could be split into likely covalent and reversible inhibitor and their predicted activity confirmed with the «ad hoc» models
- A virtual screening on the ZINC database is ongoing and soon a set of molecules will be sent for biological assay

