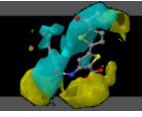
Multidisciplinary Approach in Determination of Optimal Conditions for Essential Oil Extraction from Selected Lamiaceae and Apiaceae Species

Tutor: Prof. Rino Ragno

Faculty of Pharmacy and Medicine Department of Drug Chemistry and Technology

MIJAT BOŽOVIĆ

- EO is present at low concentrations and it requires high performance extraction techniques in order for high yields to be achieved;
- EOs are produced by different methods: solvent extraction, supercritical fluid extraction, hydro- and steam distillation, ultrasound and microwave-assisted processes;
- The extraction method is important in that the composition of EOs is somewhat dependent on the applied practice;
- Inappropriate extraction procedure can damage or alter the chemical signature, resulting in the loss of bioactivity and natural characteristics.


 A separation process for temperature sensitive materials like oils, resins, hydrocarbons, etc. which are insoluble in water and may decompose at their boiling point;

ON WARAY

- It enables a compound/mixture of compounds to be distilled at a temperature significantly below the corresponding individual constituent(s) boiling point(s).
- Isolated EOs are different in composition from those naturally occurring in plants, since the process conditions cause chemical reactions to occur, which result in the formation of certain artifacts.
- Different factors determine the composition and quality of EO,
 such as cultivation, soil and climatic conditions, harvesting time.

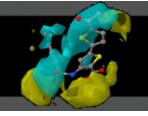
24-hour Steam Distillation Method: Background

A comprehensive study on essential oil extraction from wild Mentha suaveolens Ehrh. in terms of different harvesting and extraction time

Molecules 2015, 20, 9640-9655; doi:10.3390/molecules20069640

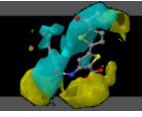
ISSN 1420-3049 www.mdpi.com/journal/molecules

Article


Multidisciplinary Approach to Determine the Optimal Time and Period for Extracting the Essential Oil from *Mentha suaveolens* Ehrh[†]

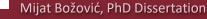
Stefania Garzoli¹, Adele Pirolli², Elisabetta Vavala³, Antonella Di Sotto⁴, Gianni Sartorelli², Mijat Božović², Letizia Angiolella³, Gabriela Mazzanti⁴, Federico Pepi¹ and Rino Ragno^{2,*}

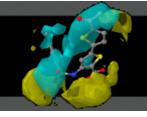
30/01/2017 4 SAPIENZA UNIVERSITÀ DI ROMA


Investigated Plant Species

- Calamintha nepeta (L.) Savi subsp. glandulosa (Req.) Ball (CG),
- Melissa officinalis L. subsp. altissima (Sibth. & Sm.) Arcangel (MA),
- Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (SP),
- Foeniculum vulgare Miller (FV) and
- Ridolfia segetum Moris (RS).

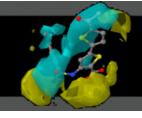

Mijat Božović, PhD Dissertation


Plant Material Collecting



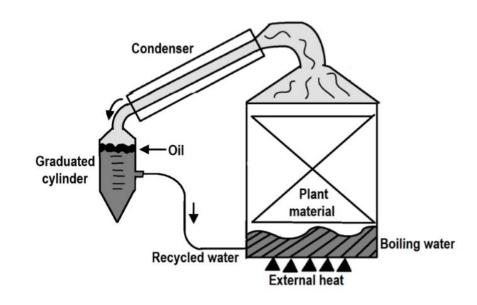
Tarquinia city, Province of Viterbo (Italy)

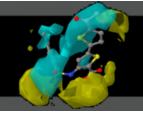
Kuće Rakića, Podgorica city (Montenegro)

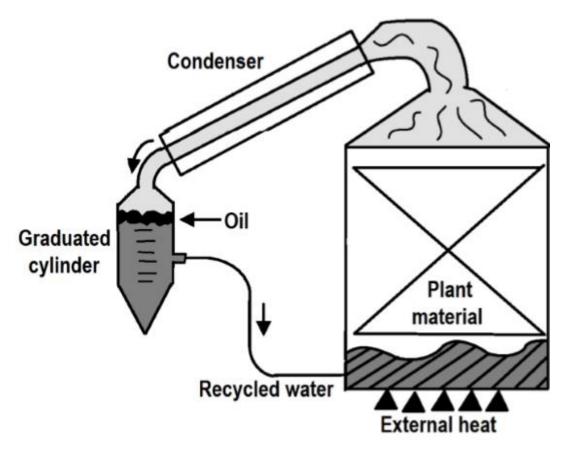


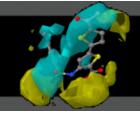
EO Extraction: Aims and Objectives

- The aim was to develop a systematic extraction system using steam distillation technique, in terms of different harvesting and extraction times;
- Having in mind that EO is made up of many distinct molecules which come together to form its aroma and therapeutic properties, it should be emphasized that some of these molecules are delicate structures that can be altered or destroyed by adverse environmental conditions;
- Longer distillation may give more complete oil, but on the other hand, it may lead to the accumulation of more artifacts; all of that may have a curious effect on the physical characteristics of EO (odor, density, color), as well as on its biological activities.




EO Extraction: In General


A direct steam distillation process using a 62 L steel distillator apparatus (Albrigi Luigi E0131, Verona, Italy)


- EO fractions were separated at different time intervals;
- The accumulated EO/water double phase was extracted 3 times with diethyl ether;
- The organic layers were dried on anhydrous Na₂SO₄, filtered and deprived of the solvent *in vacuo* to furnish oils.

GN WARA

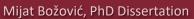
30/01/2017

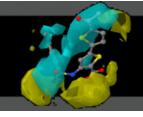
10 Sapienza

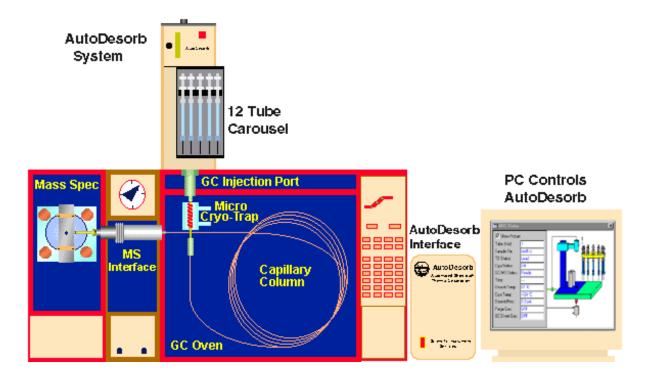
EO Extraction: The Method Validation and Application

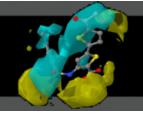
- Rosmarinus officinalis L. *
- Thymus serphyllum L. *
- Origanum vulgare L. *
- Origanum dictamnus L.*
- Mentha spicata L. *
- Melissa officinalis L. *
- Salvia officinalis L. *
- Salvia sclarea L. *
- Hyssopus officinalis L. *
- Stachys officinalis L. *
- Aloysia citridora Paláu *
- Matricaria chamomilla L. *
- Calendula officinalis L. *

- Heterotheca inuloides Cass. *
- Helichrysum italicum (Roth.) Don fil. *
- Eucalyptus globulus Labill. *
- Jasminum officinale L. *
- Citrus x aurantium L. *
- Rosa gallica L. *
- Agrimonia eupatoria L. *
- Alchemilla vulgaris L. *
- Ocimum basilicum L. **
- Mentha x villosa Hunds. **
- Origanum vulgare L.
- Mentha longifolia Huds.
- Mentha suaveolens Ehrh. ***

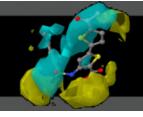

***Vivaio 98.3 Piante Mediterranee




Miiat


Chemical Analysis of EOs

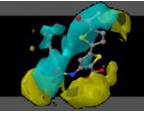
GC-MS analysis using a Perkin Elmer GS-MS equipped with a Stabilwax fused silica capillary column


Microbiology: Antifungal and Anti-biofilm Activities

- The *in vitr*o antifungal activity of EOs was evaluated against the reference strain *Candida albicans* ATCC 10231;
- The MIC was determined by *microbroth dilution method* described in the CLSI M27-A3 Standard following the international recommendations given by the National Committee for Clinical Laboratory Standards;
- The anti-biofilm activity was tested on bacterial cultures of 5 different strains belonging to genera *Pseudomonas* and *Staphylococcus*;
- Biofilm formation was assessed in static conditions;
- To measure the formation of biofilm, crystal violet staining was used;
- The biofilm-forming inhibition of less than 35% has been considered as not effective.

EO Extraction: Yields Numbers

	h ¹	1	2	3	6	12	24
Plant species	<i>m</i> ²						
SP	Jun.	0.011	0.014	0.016	0.020	0.027	0.038
MA	Jul.	0.010	0.014	0.016	0.019	0.024	0.030
	Aug.	0.020	0.026	0.029	0.033	0.036	0.039
	Sep.	0.020	0.026	0.028	0.031	0.034	0.037
MS	Jul.	0.030	0.040	0.050	0.050	0.060	0.070
	Aug.	0.070	0.090	0.100	0.120	0.150	0.190
	Sep.	0.050	0.090	0.090	0.100	0.110	0.180
CG	Jul.	0.300	0.350	0.360	0.366	0.370	0.373
	Aug.	0.300	0.360	0.400	0.420	0.426	0.432
	Sep.	0.190	0.250	0.300	0.360	0.376	0.381
	Oct.	0.180	0.260	0.290	0.320	0.328	0.328
FV	Aug.	0.070	0.110	0.140	0.180	0.196	0.213
	Sep.	0.090	0.140	0.170	0.200	0.218	0.240
	Oct.	0.360	0.640	0.830	1.090	1.210	1.250
RS	Jul.	0.200	0.300	0.440	0.640	0.740	0.800

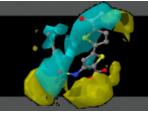

Relative yield % of essential oils over time

by www.

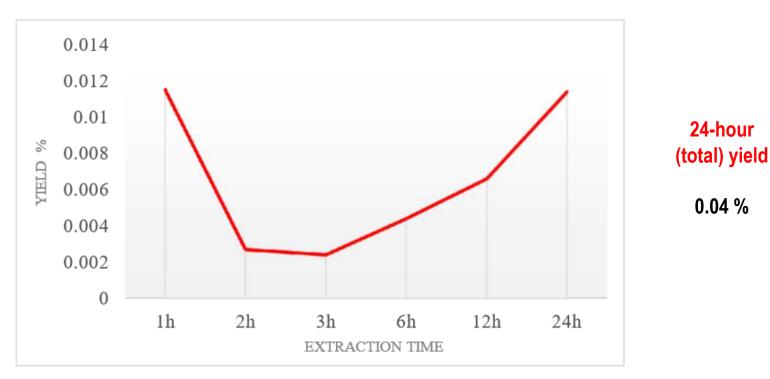
¹ Extraction hour, ² Month of harvesting.

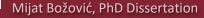
EO Extraction: Yields Numbers

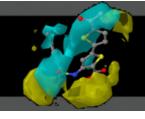
	h ¹	1	2	3	6	12	24
Plant species	<i>m</i> ²						
SP	Jun.	0.011	0.014	0.016	0.020	0.027	0.038
MA	Jul.	0.010	0.014	0.016	0.019	0.024	0.030
	Aug.	0.020	0.026	0.029	0.033	0.036	0.039
	Sep.	0.020	0.026	0.028	0.031	0.034	0.037
MS	Jul.	0.030	0.040	0.050	0.050	0.060	0.070
	Aug.	0.070	0.090	0.100	0.120	0.150	0.190
	Sep.	0.050	0.090	0.090	0.100	0.110	0.180
CG	Jul.	0.300	0.350	0.360	0.366	0.370	0.373
	Aug.	0.300	0.360	0.400	0.420	0.426	0.432
	Sep.	0.190	0.250	0.300	0.360	0.376	0.381
	Oct.	0.180	0.260	0.290	0.320	0.328	0.328
FV	Aug.	0.070	0.110	0.140	0.180	0.196	0.213
	Sep.	0.090	0.140	0.170	0.200	0.218	0.240
	Oct.	0.360	0.640	0.830	1.090	1.210	1.250
RS	Jul.	0.200	0.300	0.440	0.640	0.740	0.800

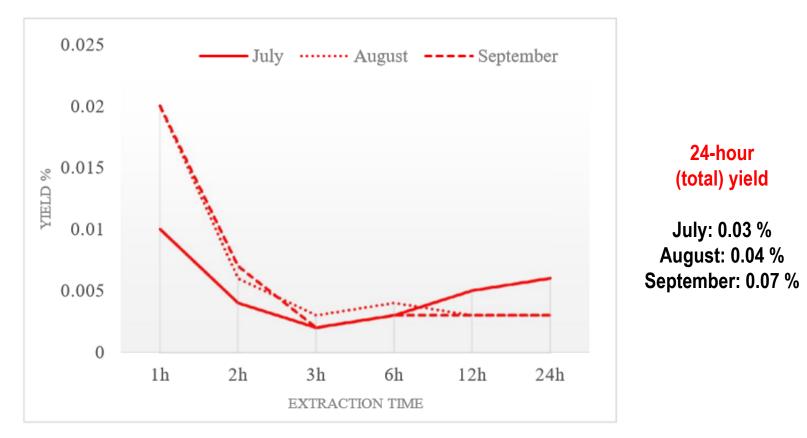

Relative yield % of essential oils over time

by www.

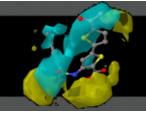

¹ Extraction hour, ² Month of harvesting.



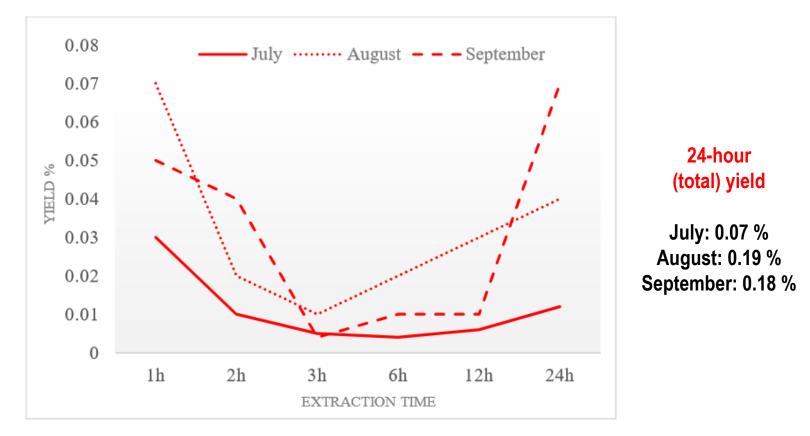

by www.



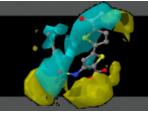
30/01/2017 15 SAPIENZA UNIVERSITA DI ROMA



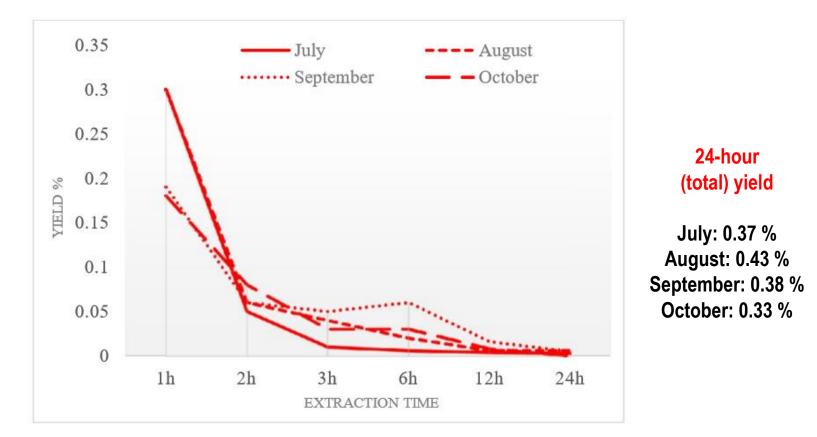
by www.



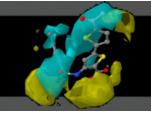
Yields curves for Melissa altissima monitored for 3 months

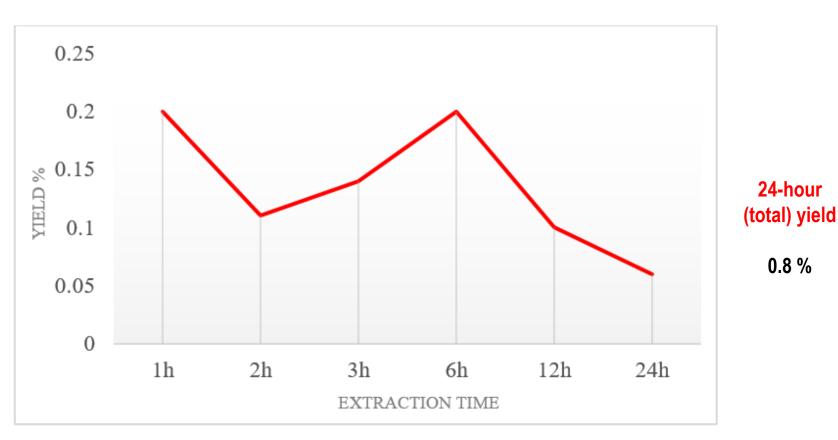


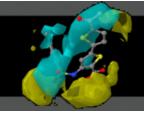
by www.



Yields curves for Mentha suaveolens monitored for 3 months

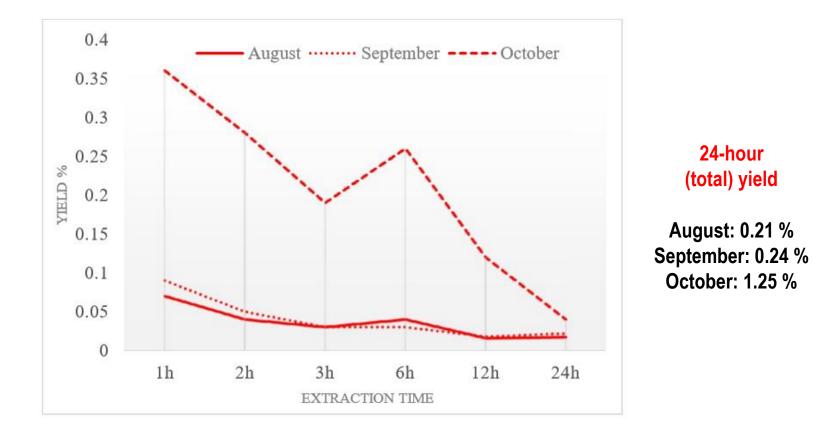



by www.

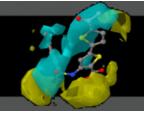


by www.

Yield curve for **Ridolfia segetum** harvested in July



30/01/2017 19

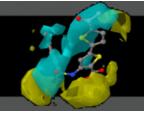

EO Extraction: Yields Plots

Yields curves for Foeniculum vulgare monitored for 3 months

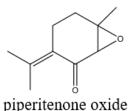
Chemical Analyses of EOs

[July ²			August		September			
h^{1}	PO	PHA	CIN	PO	PHA	CIN	PO	PHA	CIN	
1	87.2	-	0.2	65.0	5.1	-	38.7	1.6	18.8	
2	70.6	-	0.1	77.5	8.0	-	35.6	10.1	-	
3	65.6	-	-	50.0	16.5	-	69.5	0.1	-	
6	26.0	-	-	16.9	9.1	23.1	13.2	12.1	2.7	
12	14.0	-	-	2.4	2.6	34.5	5.5	6.4	13.0	
24	-	-	7.7	-	0.4	38.8	5.6	6.3	19.0	

by www.


¹ Extraction hours, ² Month of harvesting.

PO: *piperitenone oxide*; PHA: *α-pharnesene*; CIN: *cinerolone*

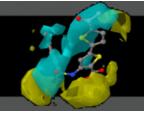

Chemical composition of Mentha suaveolens EOs

Chemical Analyses of EOs

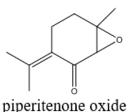
by www.

								piperi	tenone oxide
		July ²			August		S	Septembe	r
h 1	PO	PHA	CIN	PO	PHA	CIN	PO	PHA	CIN
1	87.2	-	0.2	65.0	5.1	-	38.7	1.6	18.8
2	70.6	-	0.1	77.5	8.0	-	35.6	10.1	-
3	65.6	-	-	50.0	16.5	-	69.5	0.1	-
6	26.0	-	-	16.9	9.1	23.1	13.2	12.1	2.7
12	14.0	-	-	2.4	2.6	34.5	5.5	6.4	13.0
24	-	-	7.7	-	0.4	38.8	5.6	6.3	19.0

¹ Extraction hours, ² Month of harvesting.


PO: *piperitenone oxide*; PHA: *α-pharnesene*; CIN: *cinerolone*

Chemical composition of Mentha suaveolens EOs

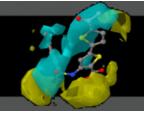


30/01/2017 22 SAPIENZA UNIVERSITA DI ROM/

Chemical Analyses of EOs

EX WARA

								piperi	tenone oxide		
		July ²			August		S	September			
h^{1}	PO	PHA	CIN	PO	PHA	CIN	PO	PHA	CIN		
1	87.2	-	0.2	65.0	5.1	-	38.7	1.6	18.8		
2	70.6	-	0.1	77.5	8.0	-	35.6	10.1	-		
3	65.6	-	-	50.0	16.5	-	69.5	0.1	-		
6	26.0	-	-	16.9	9.1	23.1	13.2	12.1	2.7		
12	14.0	-	-	2.4	2.6	34.5	5.5	6.4	13.0		
24	-	-	7.7	-	0.4	38.8	5.6	6.3	19.0		


¹ Extraction hours, ² Month of harvesting.

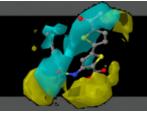
PO: piperitenone oxide; PHA: α-pharnesene; CIN: cinerolone

Chemical composition of Mentha suaveolens EOs

Chemical Analyses of EOs

[July ²			August		September			
h 1	PO	PHA	CIN	PO	PHA	CIN	PO	PHA	CIN	
1	87.2	-	0.2	65.0	5.1	-	38.7	1.6	18.8	
2	70.6	-	0.1	77.5	8.0	-	35.6	10.1	-	
3	65.6	-	-	50.0	16.5	-	69.5	0.1	-	
6	26.0	-	-	16.9	9.1	23.1	13.2	12.1	2.7	
12	14.0	-	-	2.4	2.6	34.5	5.5	6.4	13.0	
24	-	-	7.7	-	0.4	38.8	5.6	6.3	19.0	

by www.


¹ Extraction hours, ² Month of harvesting.

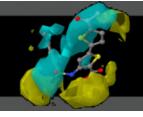
PO: *piperitenone oxide*; PHA: *α-pharnesene*; CIN: *cinerolone*

Chemical composition of Mentha suaveolens EOs

Chemical Analyses of EOs

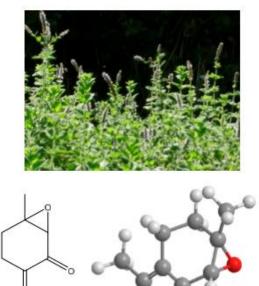
								cinerolo	ne
		July ²			August		S	Septembo	er 📕
h 1	PO	PHA	CIN	PO	PHA	CIN	PO	PHA	CIN
1	87.2	-	0.2	65.0	5.1	-	38.7	1.6	18.8
2	70.6	-	0.1	77.5	8.0	-	35.6	10.1	-
3	65.6	-	-	50.0	16.5		69.5	0.1	
6	26.0	-	-	16.9	9.1	23.1	13.2	12.1	2.7
12	14.0	-	-	2.4	2.6	34.5	5.5	6.4	13.0
24	-	-	7.7	-	0.4	38.8	5.6	6.3	19.0

be www.


¹ Extraction hours, ² Month of harvesting.

PO: *piperitenone oxide*; PHA: *α-pharnesene*; CIN: *cinerolone*

Chemical composition of Mentha suaveolens EOs

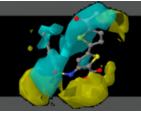


Chemical Analyses of EOs

Molecules 2015, 20, 8605-8633; doi:10.3390/molecules20058605

ISSN 1420-3049 www.mdpi.com/journal/molecules

Review


Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry [†]

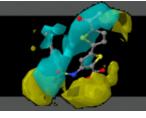
Mijat Božović, Adele Pirolli and Rino Ragno *

Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; E-Mails: mijatboz@gmail.com (M.B.); adele.pirolli@uniroma1.it (A.P.)

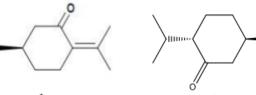
30/01/2017 26

[July ²			August	t	S	eptemb	er	October		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4

EN WARD


¹ Extraction hours, ² Month of harvesting.

PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



Chemical Analyses of EOs

pulegone

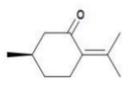
by www.

menthone

		July ²			August	t	S	eptemb	er	October		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4


¹ Extraction hours, ² Month of harvesting.

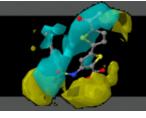
PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



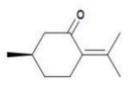
Chemical Analyses of EOs

by www.

											pul	egone
[July ²			August	t	S	eptemb	er		October	•
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4


¹ Extraction hours, ² Month of harvesting.

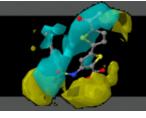
PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



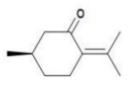
Chemical Analyses of EOs

by www.

											pul	egone
		July ²			August	t	S	eptemb	er		October	•
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4


¹ Extraction hours, ² Month of harvesting.

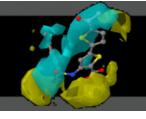
PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



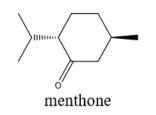
Chemical Analyses of EOs

by www.

											pule	egone
		July ²			August	t	S	eptemb	er		October	
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4

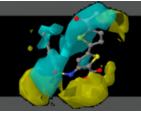

¹ Extraction hours, ² Month of harvesting.

PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



be www.

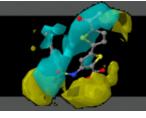
_												
	July ²				August			ept <mark>o 1</mark> b	er	Oc		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4


¹ Extraction hours, ² Month of harvesting.

PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*

[July ²				August	t	September			October		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4

EN WARD


¹ Extraction hours, ² Month of harvesting.

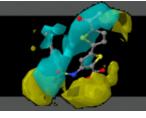
PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*

Chemical Analyses of EOs

by www.

chrysanthenone

	July ²			August			September			October		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4


¹ Extraction hours, ² Month of harvesting.

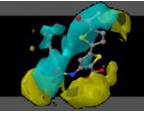
PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*

Chemical Analyses of EOs

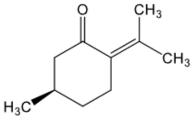
by www.

chrysanthenone

	July ²			August			September			October		
h 1	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY	PUL	MEN	CRY
1	76.8	3.1	4.4	80.8	3.9	2.6	48.8	20.3	1.3	42.5	35.4	1.3
2	77.7	0.8	10.5	84.7	2.1	5.2	62.5	20.0	2.0	57.5	27.8	2.3
3	64.3	0.6	20.3	80.0	1.0	9.0	72.9	11.2	3.4	53.3	23.6	3.3
6	53.2	0.6	22.7	66.0	0.8	18.4	74.9	5.9	6.8	68.2	10.9	5.3
12	41.1	0.6	33.9	55.4	0.7	24.0	64.8	4.1	13.6	68.8	7.0	5.4
24	37.7	-	27.3	49.9	0.7	29.5	43.2	3.7	18.6	51.8	6.8	13.4

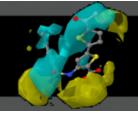

¹ Extraction hours, ² Month of narvesting.

PUL: *pulegone*; MEN: *menthone*; CRY: *chrysanthenone*



Chemical Analyses of EOs

Review


Calamintha nepeta (L.) Savi and Its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry

Mijat Božović[§] and Rino Ragno^{§,c,*}

[§]Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; E-mail: mijat.bozovic@uniroma1.it (M.B.)
[§]Alchemical Dynamics s.r.l., 00125 Rome, Italy

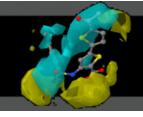
* Corresponding author: rino.ragno@uniroma1.it (R.R.); Tel.: +39-06-4991-3937; Fax: +39-06-4991-3627

30/01/2017 36

[August ²	2	S	eptemb	er	October			
h^{1}	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH	
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7	
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6	
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0	
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6	
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4	
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8	

by www.

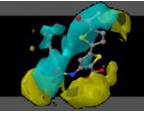
¹ Extraction hours, ² Month of harvesting.


OCI: *o-cymene*; EST: *estragole*; APH: *α-phellandrene*

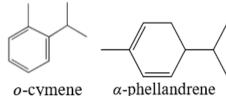
Mijat Božović, PhD Dissertation

Chemical Analyses of EOs

by www.

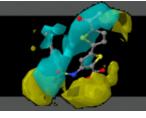

					o-cymene							
[August ²	2	S	eptemb	er	October					
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH			
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7			
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6			
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0			
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6			
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4			
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8			

¹ Extraction hours, ² Month of harvesting.

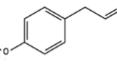


Chemical Analyses of EOs

EN WARD

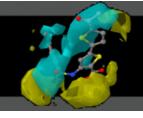

							o-cymen	e a-phena	indrene	
[August ²		S	eptemb	er	October			
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH	
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7	
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6	
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0	
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6	
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4	
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8	

¹ Extraction hours, ² Month of harvesting.



Chemical Analyses of EOs

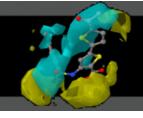
by www.


estragole

[August ²	2	S	eptemb	er	Ocuber		
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8

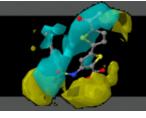
¹ Extraction hours, ² Month of harvesting.

by www.

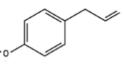

									o-cymene
		August ²	2	S	eptemb	er		October	
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8

¹ Extraction hours, ² Month of harvesting.

by www.


									o-cymene	
[August ²	2	S	eptemb	er		October		
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH	
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7	
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6	
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0	
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6	
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4	
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8	

¹ Extraction hours, ² Month of harvesting.



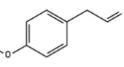
Chemical Analyses of EOs

by www.

estragole


[August ²	2	S	eptemb	er	October		
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8

¹ Extraction hours, ² Month of harvesting.

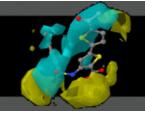


Chemical Analyses of EOs

by www.

estragole

[Aus st ²	2	S	eptemb	er	October		
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8


¹ Extraction hours, ² Month of harvesting.

OCI: o-cymene; EST: estragole; APH: *α-phellandrene*

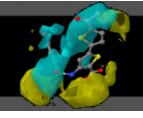
Chemical composition of Foeniculum vulgare EOs

Chemical Analyses of EOs

					П		estragole		
[Aus st ²	2	S	eptensb	er	Oct ber		
h 1	OCI	EST	APH	OCI	EST	APH	OCI	EST	APH
1	22.9	12.0	11.8	52.2	-	12.9	3.9	57.6	5.7
2	21.5	12.5	12.3	35.9	-	15.7	2.7	54.8	6.6
3	24.4	14.0	5.9	25.7	-	1.3	3.5	39.1	8.0
6	18.7	5.9	20.0	18.8	-	6.0	1.6	30.1	8.6
12	13.6	1.7	3.8	12.7	-	0.9	0.6	9.4	3.4
24	2.4	0.9	-	18.1	-	0.4	6.0	8.6	2.8

by www.

¹ Extraction hours, ² Month of harvesting.

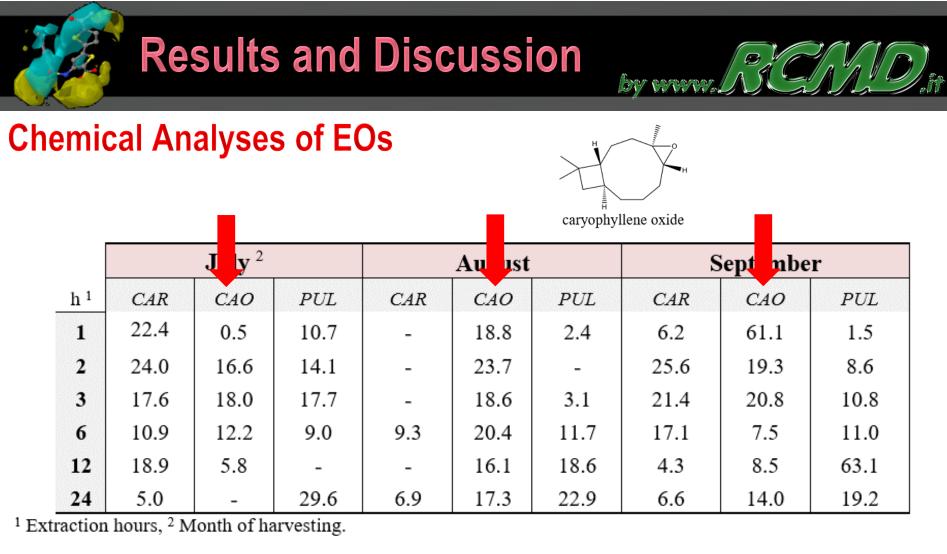

OCI: o-cymene; EST: estragole; APH: *α-phellandrene*

Mijat Božović, PhD Dissertation

30/01/2017 45 SAPIENZA UNIVERSITA DI ROM/

[July ²			August		September			
h 1	CAR	CAO	PUL	CAR	CAO	PUL	CAR	CAO	PUL	
1	22.4	0.5	10.7	-	18.8	2.4	6.2	61.1	1.5	
2	24.0	16.6	14.1	-	23.7	-	25.6	19.3	8.6	
3	17.6	18.0	17.7	-	18.6	3.1	21.4	20.8	10.8	
6	10.9	12.2	9.0	9.3	20.4	11.7	17.1	7.5	11.0	
12	18.9	5.8	-	-	16.1	18.6	4.3	8.5	63.1	
24	5.0	-	29.6	6.9	17.3	22.9	6.6	14.0	19.2	

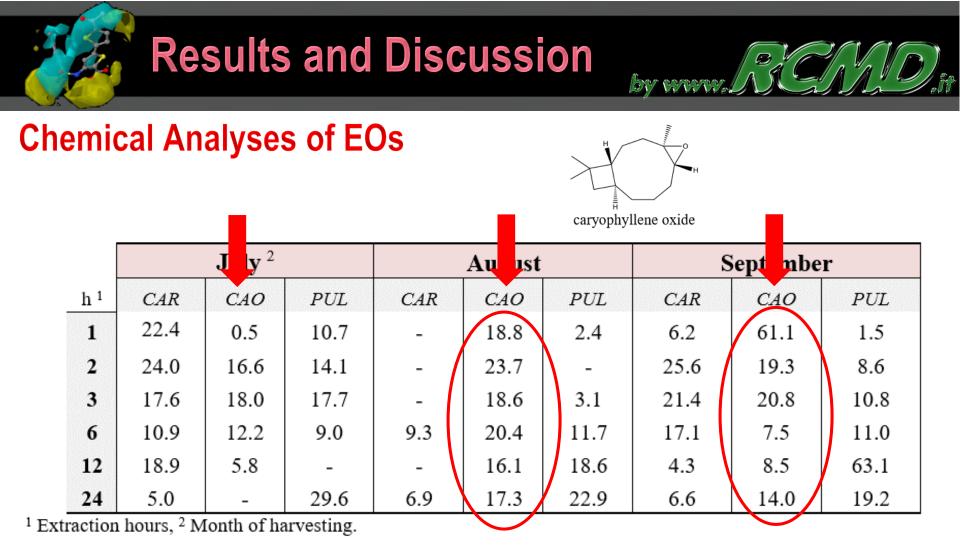
by www.


¹ Extraction hours, ² Month of harvesting.

CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

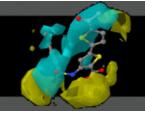
Chemical composition of Melissa altissima EOs

Mijat Božović, PhD Dissertation


CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

Chemical composition of Melissa altissima EOs

Mijat Božović, PhD Dissertation

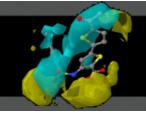


CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

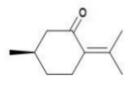
Chemical composition of Melissa altissima EOs

Mijat Božović, PhD Dissertation

Chemical Analyses of EOs


[July ²			August		September			
h 1	CAR	CAO	PUL	CAR	CAO	PUL	CAR	CAO	PUL	
1	22.4	0.5	10.7	-	18.8	2.4	6.2	61.1	1.5	
2	24.0	16.6	14.1	-	23.7	-	25.6	19.3	8.6	
3	17.6	18.0	17.7	-	18.6	3.1	21.4	20.8	10.8	
6	10.9	12.2	9.0	9.3	20.4	11.7	17.1	7.5	11.0	
12	18.9	5.8	-	-	16.1	18.6	4.3	8.5	63.1	
24	5.0	-	29.6	6.9	17.3	22.9	6.6	14.0	19.2	

¹ Extraction hours, ² Month of harvesting.


CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

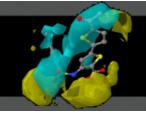
Chemical composition of Melissa altissima EOs

Chemical Analyses of EOs

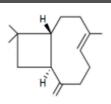
by www.

							pule	gone	
		July ²			August		S	Septembe	er
h 1	CAR	CAO	PUL	CAR	CAO	PUL	CAR	CAO	PUL
1	22.4	0.5	10.7	-	18.8	2.4	6.2	61.1	1.5
2	24.0	16.6	14.1	-	23.7	-	25.6	19.3	8.6
3	17.6	18.0	17.7	-	18.6	3.1	21.4	20.8	10.8
6	10.9	12.2	9.0	9.3	20.4	11.7	17.1	7.5	11.0
12	18.9	5.8	-	-	16.1	18.6	4.3	8.5	63.1
24	5.0	-	29.6	6.9	17.3	22.9	6.6	14.0	19.2

¹ Extraction hours, ² Month of harvesting.


CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

Chemical composition of Melissa altissima EOs

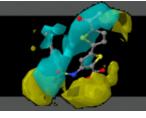


Chemical Analyses of EOs

by www.

caryophyllene July² September August h 1 CAR CAO PUL CAR CAO PUL CAR CAO PUL 22.46.2 1 0.5 10.718.8 2.4 61.1 1.5 2 24.0 23.7 25.6 8.6 16.6 14.119.3 3 17.6 18.0 17.718.6 3.1 21.4 20.8 10.86 12.2 9.0 9.3 20.411.717.17.5 11.010.9 12 18.9 5.8 16.1 18.6 4.3 8.5 63.1 24 5.0 29.6 6.9 17.322.9 6.6 14.0 19.2

¹ Extraction hours, ² Month of harvesting.


CAR: caryophyllene; CAO: caryophyllene oxide; PUL: pulegone

Chemical composition of Melissa altissima EOs

Mijat Božović, PhD Dissertation

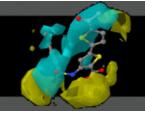
	July					
h 1	OCI	API	LIM			
1	40.1	6.5	7.4			
2	23.6	11.7	4.5			
3	3.3	18.2	5.8			
6	12.1	22.3	3.3			
12	6.5	52.2	1.1			
24	3.5	60.3	0.2			

 h^{1} GEL. SPA VER 22.21 18.12 25.227.7 3 14.426.76.4 9.2 15.48.5 6 12 6.3 11.5 10.46.7 24 8.9 13.9

June

¹ Extraction hours.

¹ Extraction hours.


by www.

OCI: o-cymene; API: apiol; LIM: limonene; GEL: γ-elemene; SPA: spathulenol; VER: verbenone

5

Chemical composition of Ridolfia sefetum and Sideritis purpurea EOs

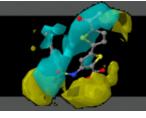
Mijat Božović, PhD Dissertation

Chemical Analyses of EOs

		Ju					June	
h 1	OCI	API	LIM		h 1	GEL	SPA	VER
1	40.1	6.5	7.4	o-cymene	1	22.2	18.1	-
2	23.6	11.7	4.5	0	2	25.2	27.7	-
3	3.3	18.2	5.8		3	14.4	26.7	6.4
6	12.1	22.3	3.3		6	9.2	15.4	8.5
12	6.5	52.2	1.1	م apiol	12	6.3	10.4	11.5
24	3.5	60.3	0.2	apioi	24	6.7	8.9	13.9

¹ Extraction hours.

¹ Extraction hours.


by www.

OCI: o-cymene; API: apiol; LIM: limonene; GEL: γ-elemene; SPA: spathulenol; VER: verbenone

6

Chemical composition of Ridolfia sefetum and Sideritis purpurea EOs

Mijat Božović, PhD Dissertation

	July					
h ¹	OCI	API	LIM			
1	40.1	6.5	7.4			
2	23.6	11.7	4.5			
3	3.3	18.2	5.8			
6	12.1	22.3	3.3			
12	6.5	52.2	1.1			
24	3.5	60.3	0.2			

22.21 18.125.22 27.7 3 14.426.76.4 9.2 15.48.5 6 12 6.3 11.5 10.46.7 24 8.9 13.9

June

SPA

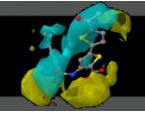
VER

¹ Extraction hours.

¹ Extraction hours.

by www.

GEL.


 h^{1}

OCI: o-cymene; API: apiol; LIM: limonene; GEL: γ-elemene; SPA: spathulenol; VER: verbenone

5

Chemical composition of Ridolfia sefetum and Sideritis purpurea EOs

Mijat Božović, PhD Dissertation

		July					Ju e	
h 1	OCI	API	LIM		h 1	GEL	SPA	VER
1	40.1	6.5	7.4		1	22.2	18.1	-
2	23.6	11.7	4.5	γ-elemene	2	25.2	27.7	-
3	3.3	18.2	5.8		3	14.4	26.7	6.4
6	12.1	22.3	3.3	HIMIN	6	9.2	15.4	8.5
12	6.5	52.2	1.1	он	12	6.3	10.4	11.5
24	3.5	60.3	0.2	spathulenol	24	6.7	8.9	13.9

¹ Extraction hours.

¹ Extraction hours.

by www.


OCI: o-cymene; API: apiol; LIM: limonene; GEL: γ-elemene; SPA: spathulenol; VER: verbenone

5

Chemical composition of Ridolfia sefetum and Sideritis purpurea EOs

Mijat Božović, PhD Dissertation

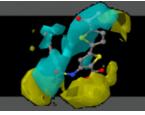
30/01/2017 55 SAPIENZA UNIVERSITÀ DI ROMA

	July		July			June		
h1	OCI	API	LIM	_	h ¹	GEL	SPA	VER
1	40.1	6.5	7.4		1	22.2	18.1	-
2	23.6	11.7	4.5		2	25.2	27.7	-
3	3.3	18.2	5.8		3	14.4	26.7	6.4
6	12.1	22.3	3.3		6	9.2	15.4	8.5
12	6.5	52.2	1.1	verbenone	12	6.3	10.4	11.5
24	3.5	60.3	0.2		24	6.7	8.9	13.9

¹ Extraction hours.

¹ Extraction hours.

by ward.

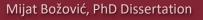

OCI: o-cymene; API: apiol; LIM: limonene; GEL: γ-elemene; SPA: spathulenol; VER: verbenone

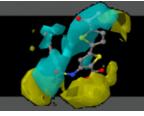
5

Chemical composition of Ridolfia segetum and Sideritis purpurea EOs

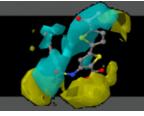
Mijat Božović, PhD Dissertation

30/01/2017 56 SAPIENZA UNIVERSITA DI ROM/



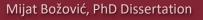

Sample ¹	MIC mg/mL	PO %
J1h	0.10	87.2
J2h	0.10	70.6
J3h	0.10	65.6
J6h	6.25	26.0
J12h	6.25	14.8
J24h	12.50	-
A1h	0.10	65.0
A2h	0.02	77.5
A3h	0.10	50.0
A6h	0.78	16.9
A12h	3.12	2.4
A24h	6.25	-
S1h	0.20	38.7
S2h	0.20	35.6
S3h	0.10	69.5
S6h	6.25	13.2
S12h	6.25	5.5
S24h	0.20	5.6
Miconazole #	0.016	-

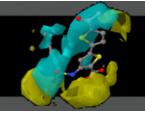
by www.l



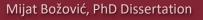
Sample ¹	MIC mg/mL	PO %
J1h	0.10	87.2
J2h	0.10	70.6
J3h	0.10	65.6
J6h	6.25	26.0
J12h	6.25	14.8
J24h	12.50	-
A1h	0.10	65.0
A2h	0.02	77.5
A3h	0.10	50.0
A6h	0.78	16.9
A12h	3.12	2.4
A24h	6.25	-
S1h	0.20	38.7
S2h	0.20	35.6
S3h	0.10	69.5
S6h	6.25	13.2
S12h	6.25	5.5
S24h	0.20	5.6
Miconazole #	0.016	-

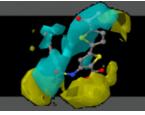
by www.l



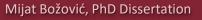

Sample ¹	MIC mg/mL	PO %	
J1h	0.10	87.2	
J2h	0.10	70.6	
J3h	0.10	65.6	
J6h	6.25	26.0	
J12h	6.25	14.8	
J24h	12.50	÷	\sim
A1h	0.10	65.0	
A2h	0.02	77.5	
A3h	0.10	50.0	
A6h	0.78	16.9	piperitenone oxide
A12h	3.12	2.4	
A24h	6.25	÷	
S1h	0.20	38.7	
S2h	0.20	35.6	
S3h	0.10	69.5	
S6h	6.25	13.2	
S12h	6.25	5.5	
S24h	0.20	5.6	
Miconazole #	0.016	-	

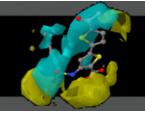
by www.l



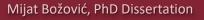

Sample ¹	MIC mg/mL	PO %
J1h	0.10	87.2
J2h	0.10	70.6
J3h	0.10	65.6
J6h	6.25	26.0
J12h	6.25	14.8
J24h	12.50	-
A1h	0.10	65.0
A2h	0.02	77.5
A3h	0.10	50.0
A6h	0.78	16.9
A12h	3.12	2.4
A24h	6.25	-
S1h	0.20	38.7
S2h	0.20	35.6
S3h	0.10	69.5
S6h	6.25	13.2
S12h	6.25	5.5
S24h	0.20	5.6
Miconazole #	0.016	

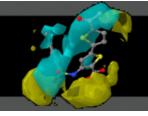
by www.l



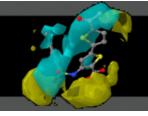

Sample ¹	MIC mg/mL	PO %
J1h	0.10	87.2
J2h	0.10	70.6
J3h	0.10	65.6
J6h	6.25	26.0
J12h	6.25	14.8
J24h	12.50	-
A1h	0.10	65.0
A2h	0.02	77.5
A3h	0.10	50.0
A6h	0.78	16.9
A12h	3.12	2.4
A24h	6.25	-
S1h	0.20	38.7
S2h	0.20	35.6
S3h	0.10	69.5
S6h	6.25	13.2
S12h	6.25	5.5
S24h	0.20	5.6
/liconazole #	0.016	-

by www.l



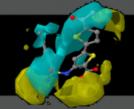

Sample ¹	MIC mg/mL	PO %
J1h	0.10	87.2
J2h	0.10	70.6
J3h	0.10	65.6
J6h	6.25	26.0
J12h	6.25	14.8
J24h	12.50	-
A1h	0.10	65.0
A2h	0.02	77.5
A3h	0.10	50.0
A6h	0.78	16.9
A12h	3.12	2.4
A24h	6.25	
S1h	0.20	38.7
S2h	0.20	35.6
S3h	0.10	69.5
S6h	6.25	13.2
S12h	6.25	5.5
S24h	0.20	5.6
Miconazole #	0.016	-

by www.


Antifungal Activity of EOs

Sample 1	MIC mg/mL PUL %		DIT 04	Sample ¹	MIC mg/mL		PUL %
Sampic	24h	48h	ICL /0	Sample -	24h	48h	FUL 70
J1h	6.24	6.24	76.8	S1h	6.24	12.48	48.8
J2h	6.24	12.48	77.7	S2h	6.24	12.48	62.5
J3h	0.78	6.24	64.3	S3h	3.12	12.48	72.9
J6h	na	na	53.2	S6h	1.56	6.24	74.9
J12h	12.48	12.48	41.1	S12h	3.12	12.48	64.8
J24h	na	na	37.7	S24h	12.48	na	43.2
A1h	3.12	12.48	80.8	O1h	6.24	12.48	42.5
A2h	3.12	6.24	84.7	O2h	6.24	12.48	57.5
A3h	1.56	3.12	80.0	O3h	6.24	12.48	53.3
A6h	3.12	6.24	66.0	O6h	12.48	12.48	68.2
A12h	6.24	na	55.4	O12h	12.48	12.48	68.8
A24h	6.24	12.48	49.9	O24h	na	na	51.8

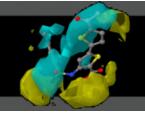
Anti-Candida albicans activities of Calamintha glandulosa EOs


Antifungal Activity of EOs

MIC mg/mL		DIT 0/-	Sampla	MIC mg/mL		PUL %
24h	48h	FUL 70	Sample -	24h	48h	FUL 70
6.24	6.24	76.8	S1h	6.24	12.48	48.8
6.24	12.48	77.7	S2h	6.24	12.48	62.5
0.78	6.24	64.3	S3h	3.12	12.48	72.9
na	na	53.2	S6h	1.56	6.24	74.9
12.48	12.48	41.1	S12h	3.12	12.48	64.8
na	na	37.7	S24h	12.48	na	43.2
3.12	12.48	80.8	O1h	6.24	12.48	42.5
3.12	6.24	84.7	O2h	6.24	12.48	57.5
1.56	3.12	80.0	O3h	6.24	12.48	53.3
3.12	6.24	66.0	O6h	12.48	12.48	68.2
6.24	na	55.4	O12h	12.48	12.48	68.8
6.24	12.48	49.9	O24h	na	na	51.8
	24h 6.24 6.24 0.78 na 12.48 na 3.12 3.12 1.56 3.12 6.24	24h 48h 6.24 6.24 6.24 12.48 0.78 6.24 na na 12.48 12.48 na na 12.48 12.48 na na 3.12 6.24 1.56 3.12 3.12 6.24 1.56 3.12 3.12 6.24 1.56 3.12 3.12 6.24 1.56 3.12 3.12 6.24 1.56 3.12 3.12 6.24 1.56 3.12	24h48h6.246.2476.86.2412.4877.70.786.2464.3nana53.212.4812.4841.1nana37.73.1212.4880.83.126.2484.71.563.1280.03.126.2466.06.24na55.4	24h 48h PUL % Sample 1 6.24 6.24 76.8 S1h 6.24 12.48 77.7 S2h 0.78 6.24 64.3 S3h na na 53.2 S6h 12.48 12.48 41.1 S12h na na 37.7 S24h 3.12 12.48 80.8 O1h 3.12 6.24 84.7 O2h 1.56 3.12 80.0 O3h 3.12 6.24 66.0 O6h 6.24 76.8 10.0 10.0	24h48h24h6.246.2476.8S1h6.246.2412.4877.7S2h6.240.786.2464.3S3h3.12nana53.2S6h1.5612.4812.4841.1S12h3.12nana37.7S24h12.483.1212.4880.8O1h6.243.126.2484.7O2h6.241.563.1280.0O3h6.243.126.2466.0O6h12.483.126.2466.0O6h12.486.24na55.4O12h12.48	24h48h24h24h48h 6.24 6.24 76.8 S1h 6.24 12.48 6.24 12.48 77.7 S2h 6.24 12.48 0.78 6.24 64.3 S3h 3.12 12.48 na na 53.2 S6h 1.56 6.24 12.48 12.48 41.1 S12h 3.12 12.48 na na 37.7 S24h 12.48 na 3.12 12.48 80.8 O1h 6.24 12.48 3.12 12.48 80.8 O1h 6.24 12.48 3.12 6.24 84.7 O2h 6.24 12.48 3.12 6.24 84.7 O2h 6.24 12.48 3.12 6.24 66.0 O6h 12.48 12.48 6.24 na 55.4 O12h 12.48 12.48

Anti-Candida albicans activities of Calamintha glandulosa EOs

81-1	MIC n	ng/mL	PUL % Sample ¹	G1. 1	MIC n	ng/mL	DIT 04
Sample ¹	24h	48h		Sample -	24h	48h	PUL %
J1h	6.24	6.24	76.8	S1h	6.24	12.48	48.8
J2h	6.24	12.48	77.7	S2h	6.24	12.48	62.5
J3h	0.78	6.24	64.3	S3h	3.12	12.48	72.9
J6h	na	na	53.2	S6h	1.56	6.24	74.9
J12h	12.48	12.48	41.1	S12h	3.12	12.48	64.8
J24h	na	na	37.7	S24h	12.48	na	43.2
A1h	3.12	12.48	80.8	O1h	6.24	12.48	42.5
A2h	3.12	6.24	84.7	O2h	6.24	12.48	57.5
A3h	1.56	3.12	80.0	O3h	6.24	12.48	53.3
A6h	3.12	6.24	66.0	O6h	12.48	12.48	68.2
A12h	6.24	na	55.4	O12h	12.48	12.48	68.8
A24h	6.24	12.48	49.9	O24h	na	na	51.8


by www.

Anti-Candida albicans activities of Calamintha glandulosa EOs

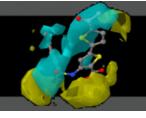
Mijat Božović, PhD Dissertation

Article

Essential Oil Extraction, Chemical Analysis and Anti-*Candida* Activity of *Calamintha nepeta* (L.) Savi subsp. *glandulosa* (Req.) Ball—New Approaches

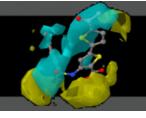
by ward

Mijat Božović ^{1,2,†}, Stefania Garzoli ^{2,†}, Manuela Sabatino ^{1,2}, Federico Pepi ², Anna Baldisserotto ³, Elisa Andreotti ⁴, Carlo Romagnoli ⁴, Antonello Mai ², Stefano Manfredini ^{3,*} and Rino Ragno ^{1,2,5,*}


- ¹ Rome Center for Molecular Design, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; mijat.bozovic@uniroma1.it (M.B.); manuela.sabatino@uniroma1.it (M.S.)
- ² Department of Drug Chemistry and Technology, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; stefania.garzoli@uniroma1.it (S.G.); federico.pepi@uniroma1.it (F.P.); antonello.mai@uniroma1.it (A.M.)
- ³ Department of Life Sciences and Biotechnology, School of Pharmacy and Heath Products, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; anna.baldisserotto@unife.it
- ⁴ Department of Life Sciences, University of Modena and Reggio Emilia, Viale Caduti in Guerra 127, 41121 Modena, Italy; elisa.andreotti@unimo.it (E.A.); carlo.romagnoli@unimo.it (C.R.)
- ⁵ Alchemical Dynamics s.r.l., 00125 Rome, Italy
- * Correspondence: stefano.manfredini@unife.it (S.M.); rino.ragno@uniroma1.it (R.R.), Tel.: +39-532-974-635 (S.M.); +39-6-4991-3937 (R.R.); Fax: +39-532-455-953 (S.M.); +39-6-4991-3627 (R.R.)
- † M.B. and S.G. contributed equally to the paper.

30/01/2017

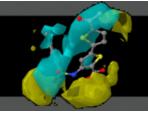
66


Antifungal Activity of EOs

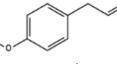
Sample 1	MIC mg/mL		C 1 1	MIC n	MIC mg/mL			MIC mg/mL	
Sample ¹	24h	48h	Sample ¹	24h	48h	Sample ¹	24h	48h	
A1h	na	na	S1h	na	na	O1h	1.56	6.24	
A2h	12.48	na	S2h	6.24	12.48	O2h	3.12	12.48	
A3h	na	na	S3h	6.24	12.48	O3h	1.56	12.48	
A6h	na	na	S6h	6.24	na	O6h	3.12	6.24	
A12h	na	na	S12h	6.24	na	O12h	6.24	12.48	
A24h	na	na	S24h	12.48	12.48	O24h	na	na	

Anti-Candida albicans activities of Foeniculum vulgare EOs

Mijat Božović, PhD Dissertation

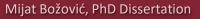

Antifungal Activity of EOs

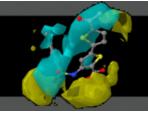
Comple 1	MIC mg/mL		Commits 1	MIC n	MIC mg/mL			MIC mg/mL	
Sample ¹	24h	48h	Sample ¹	24h	48h	Sample ¹	24h	48h	
A1h	na	na	S1h	na	na	O1h	1.56	6.24	
A2h	12.48	na	S2h	6.24	12.48	O2h	3.12	12.48	
A3h	na	na	S3h	6.24	12.48	O3h	1.56	12.48	
A6h	na	na	S6h	6.24	na	O6h	3.12	6.24	
A12h	na	na	S12h	6.24	na	O12h	6.24	12.48	
A24h	na	na	S24h	12.48	12.48	O24h	na	na	


Anti-Candida albicans activities of Foeniculum vulgare EOs

Mijat Božović, PhD Dissertation

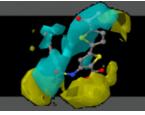
Antifungal Activity of EOs




estragole

Cample 1	MIC mg/mL 24h 48h		C 1 - 1	MIC n	MIC mg/mL			MIC mg/mL	
Sample ¹			Sample ¹	24h	48h	Sample ¹	24h	48h	
A1h	na	na	S1h	na	na	O1h	1.56	6.24	
A2h	12.48	na	S2h	6.24	12.48	O2h	3.12	12.48	
A3h	na	na	S3h	6.24	12.48	O3h	1.56	12.48	
A6h	na	na	S6h	6.24	na	O6h	3.12	6.24	
A12h	na	na	S12h	6.24	na	O12h	6.24	12.48	
A24h	na	na	S24h	12.48	12.48	O24h	na	na	

Anti-Candida albicans activities of Foeniculum vulgare EOs



 The activity was evaluated against 5 bacterial pathogens: 2 strains belonging to Staphylococcus epidermidis, 2 belonging to S. aureus species and Pseudomonas aeruginosa PaO1;

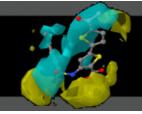
ON GRANN

- The effect is reported as % of residual biofilm after treatment in comparison to untreated bacteria;
- In general, both strains of S. aureus were found to be the most resistant, whereas the strains of S. epidermidis species showed highest susceptibility.
- However, none of the concentrations caused the complete inhibition of biofilm;

Anti-biofilm Activity of EOs

Calamintha glandulosa

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.



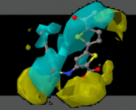
Mijat	Božović,	PhD	Dissertation
-------	----------	-----	--------------

Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
J1h	0.0003814	0.0003814	na	na	na
J2h	0.0003814	0.0003814	na	na	na
J3h	12.5	12.5	na	na	na
J6h	12.5	25	1.55	na	na
J12h	25	25	na	na	na
J24h	25	25	3.125	na	na
A1h	0.0003814	3.125	na	na	25
A2h	0.0003814	0.18	na	na	na
A3h	0.0003814	0.18	na	na	25
A6h	0.0003814	0.39	na	na	25
A12h	25	na	25	na	na
A24	12.5	na	6.25	12.5	na
S1h	0.0003814	na	25	na	na
S2h	0.0003814	0.18	25	na	na
S3h	0.0003814	0.18	na	na	na
S6h	0.0003814	0.18	na	na	na
S12h	na	na	12.5	na	na
S24h	na	na	0.39	na	na
O1h	0.0003814	0.39	na	6.25	na
O2h	0.0003814	0.39	na	na	na
O3h	12.5	12.5	25	na	na
O6h	0.0003814	0.39	na	na	na
O12h	na	na	na	na	na
O24h	25	na	na	na	na

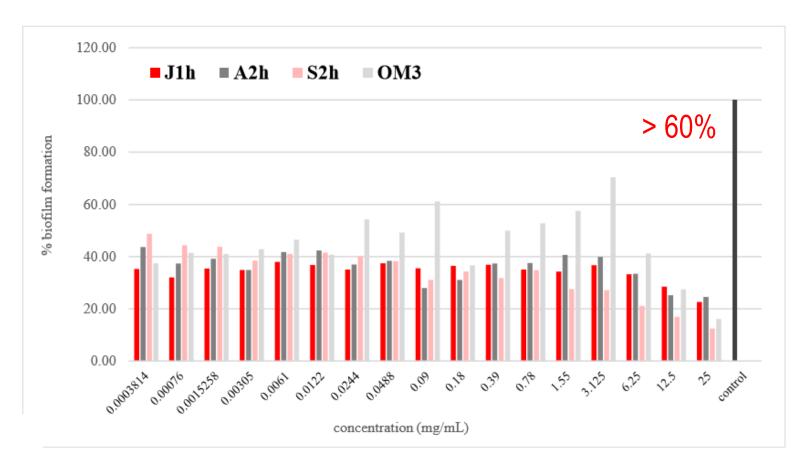
by www.

Calamintha glandulosa

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

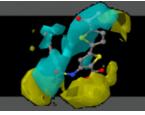


03					
Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
J1h	0.0003814	0.0003814	na	na	na
J2h	0.0003814	0.0003814	na	na	na
J3h	12.5	12.5	na	na	na
J6h	12.5	25	1.55	na	na
J12h	25	25	na	na	na
J24h	25	25	3.125	na	na
A1h	0.0003814	3.125	na	na	25
A2h	0.0003814	0.18	na	na	na
A3h	0.0003814	0.18	na	na	25
A6h	0.0003814	0.39	na	na	25
A12h	25	na	25	na	na
A24	12.5	na	6.25	12.5	na
S1h	0.0003814	na	25	na	na
S2h	0.0003814	0.18	25	na	na
S3h	0.0003814	0.18	na	na	na
S6h	0.0003814	0.18	na	na	na
S12h	na	na	12.5	na	na
S24h	na	na	0.39	na	na
O1h	0.0003814	0.39	na	6.25	na
O2h	0.0003814	0.39	na	na	na
O3h	12.5	12.5	25	na	na
O6h	0.0003814	0.39	na	na	na
O12h	na	na	na	na	na
O24h	25	na	na	na	na


30/01/2017

72 APIENZA

by www.



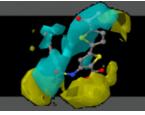
BY WWW

Effects of selected Calamintha glandulosa samples treatment on biofilm formation for S. epidermidis O47

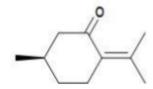
Anti-biofilm Activity of EOs

<u>Calamintha glandulosa</u>

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.


Sample ¹	S. epidermidis	S. epidermidis RT02A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
J1h	0.0003814	0.0003814	na	na	na
J2h	0.0003814	0.0003814	na	na	na
J3h	12.5	12.5	na	na	na
J6h	12.5	25	1.55	na	na
J12h	25	25	na	na	na
J24h	25	25	3.125	na	na
A1h	0.0003814	3.125	na	na	25
A2h	0.0003814	0.18	na	na	na
A3h	0.0003814	0.18	na	na	25
A6h	0.0003814	0.39	na	na	25
A12h	25	na	25	na	na
A24	12.5	na	6.25	12.5	na
S1h	0.0003814	na	25	na	na
S2h	0.0003814	0.18	25	na	na
S3h	0.0003814	0.18	na	na	na
S6h	0.0003814	0.18	na	na	na
S12h	na	lla	12.5	na	na
S24h	na	na	0.39	na	na
O1h	0.0003814	0.39	na	6.25	na
O2h	0.0003814	0.39	na	na	na
O3h	12.5	12.5	25	na	na
O6h	0.0003814	0.39	na	na	na
O12h	112	na	na	na	na
O24h	25	na	na	na	na

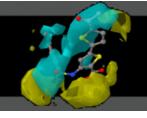
by www.


30/01/2017 74

Anti-biofilm Activity of EOs

<u>Calamintha glandulosa</u>

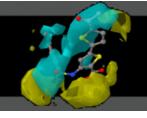
The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.


pulegone

Sample ¹	S. epidermidis 047	S. epidermidis RP02A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
J1h	0.0003814	0.0003814	na	na	na
J2h	0.0003814	0.0003814	na	na	na
J3h	12.5	12.5	na	na	na
J6h	12.5	25	1.55	na	na
J12h	25	25	na	na	na
J24h	25	25	3.125	na	na
A1h	0.0003814	3.125	na	na	25
A2h	0.0003814	0.18	na	na	na
A3h	0.0003814	0.18	na	na	25
A6h	0.0003814	0.39	na	na	25
A12h	25	na	25	na	na
A24	12.5	na	6.25	12.5	na
S1h	0.0003814	na	25	na	na
S2h	0.0003814	0.18	25	na	na
S3h	0.0003814	0.18	na	na	na
S6h	0.0003814	0.18	na	na	na
S12h	na	lla	12.5	na	na
S24h	na	na	0.39	na	na
O1h	0.0003814	0.39	na	6.25	na
O2h	0.0003814	0.39	na	na	na
O3h	12.5	12.5	25	na	na
O6h	0.0003814	0.39	na	na	na
O12h	112	na	na	na	na
O24h	25	na	na	na	na

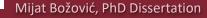
by www.


Anti-biofilm Activity of EOs

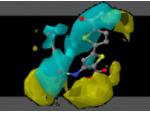

Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	na	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na

Ridolfia segetum

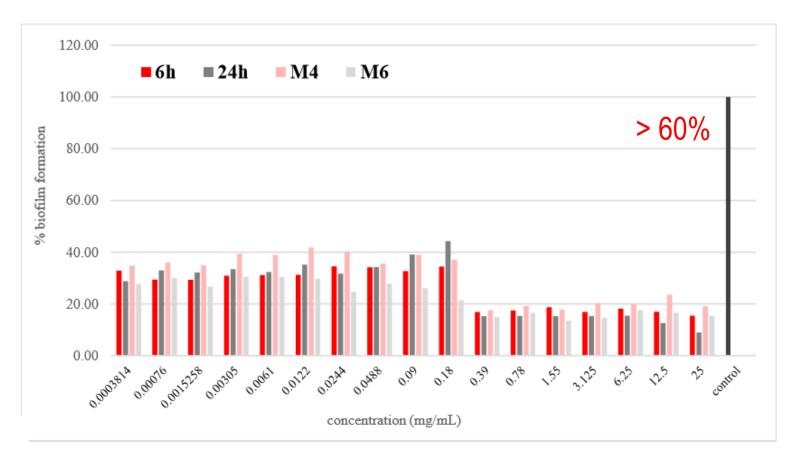
The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.


Anti-biofilm Activity of EOs

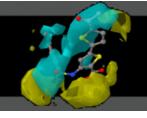
Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	na	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na


Ridolfia segetum

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

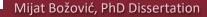


30/01/2017 77

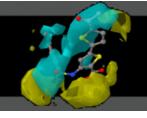

BY WWW.

Effects of selected Ridolfia segetum samples treatment on biofilm formation for S. epidermidis RP62A

Mijat Božović, PhD Dissertation


Anti-biofilm Activity of EOs

Sample ¹ S. epidermidi O47		S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	na	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na

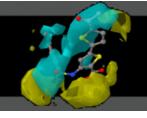

Ridolfia segetum

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

Anti-biofilm Activity of EOs

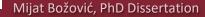
Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	na	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na
		Ridolfia so	aotum		0

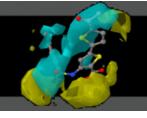
<u>Ridolfia segetum</u>


The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

80 SAPIENZA INIVERSITÀ DI ROMA

apiol


Anti-biofilm Activity of EOs


Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	Па	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na

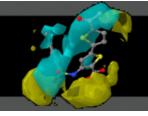
Ridolfia segetum

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

Anti-biofilm Activity of EOs

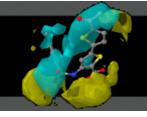
Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
1h	25	25	0.0003814	25	na
2h	25	25	0.0488	na	na
3h	na	25	3.125	12.5	na
6h	0.0003814	0.0003814	Па	na	na
12h	25	25	12.5	na	na
24h	0.0003814	0.0003814	na	na	na

Ridolfia segetum

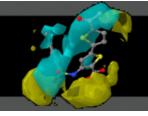

The lowest concentration (mg/mL) of samples causing at least 35% biofilm inhibition.

30/01/2017 82

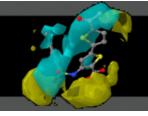
o-cymene



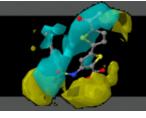
	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
	A1h	na	3.125	0.0003814	25	na
	A2h	na	na	0.0003814	na	na
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na
vulgare	A6h	25	25	0.0003814	25	na
	A12h	25	12.5	0.0003814	25	na
The lowest	A24h	12.5	12.5	0.0003814	na	na
concentration	S1h	na	na	0.0003814	12.5	na
concentration	S2h	na	na	6.25	12.5	0.78
(mg/mL) of	S3h	25	25	na	12.5	na
samplas causing	S6h	25	25	12.5	12.5	25
samples causing	S12h	25	25	na	12.5	na
at least 35%	S24h	25	25	na	na	na
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na
	O2h	na	na	na	na	na
	O3h	0.0003814	0.0003814	na	na	na
•	O6h	0.0003814	0.0003814	na	na	na
	O12h	na	na	25	na	na
	O24h	0.0003814	0.0003814	na	na	na



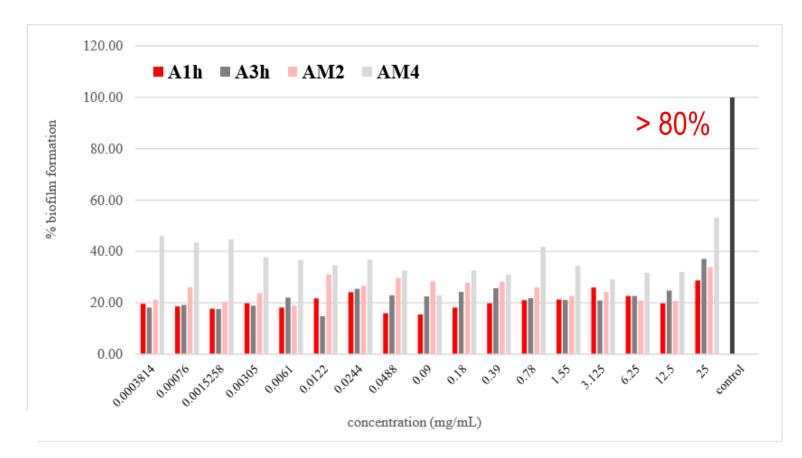
	Sample ¹	S. epidermidis	S. epidermidis	P. aeruginosa	S. aureus	S. aureus
	Sample -	Q47	RP62A	PaO1	6538P	25923
	A1h	na	3.125	0.0003814	25	na
	A2h	na	na	0.0003814	na	na
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na
vulgare	A6h	25	25	0.0003814	25	na
	A12h	25	12.5	0.0003814	25	na
The lowest	A24h	12.5	12.5	0.0003814	na	na
concentration	S1h	na	na	0.0003814	12.5	na
	S2h	na	na	6.25	12.5	0.78
(mg/mL) of	S3h	25	25	na	12.5	na
samples causing	S6h	25	25	12.5	12.5	25
i c	S12h	25	25	na	12.5	na
at least 35%	S24h	25	25	na	na	na
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na
	O2h	na	na	na	na	na
	O3h	0.0003814	0.0003814	na	na	na
An	O6h	0.0003814	0.0003814	na	na	na
	O12h	na	na	25	na	na
	O24h	0.0003814	0.0003814	na	na	na

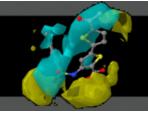


	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
	A1h	na	3.125	0.0003814	25	na
	A2h	na	na	0.0003814	na	na
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na
vulgare	A6h	25	25	0.0003814	25	na
	A12h	25	12.5	0.0003814	25	na
The lowest	A24h	12.5	12.5	0.0003814	na	na
concentration	S1h	na	na	0.0003814	12.5	na
CONCENTIATION	S2h	na	na	6.25	12.5	0.78
(mg/mL) of	S3h	25	25	na	12.5	na
samples causing	S6h	25	25	12.5	12.5	25
, ,	S12h	25	25	na	12.5	na
at least 35%	S24h	25	25	na	na	na
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na
	O2h	na	na	na	na	na
	O3h	0.0003814	0.0003814	na	na	na
An	O6h	0.0003814	0.0003814	na	na	na
	O12h	na	na	25	na	na
	O24h	0.0003814	0.0003814	na	na	na

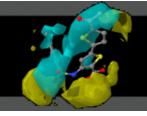


	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923
	A1h	na	3.125	0.0003814	25	na
	A2h	na	na	0.0003814	na	na
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na
vulgare	A6h	25	25	0.0003814	25	na
	A12h	25	12.5	0.0003814	25	na
The lowest	A24h	12.5	12.5	0.0003814	na	na
concentration	S1h	na	na	0.0003814	12.5	na
CONCENTIATION	S2h	na	na	6.25	12.5	0.78
(mg/mL) of	S3h	25	25	na	12.5	na
samples causing	S6h	25	25	12.5	12.5	25
	S12h	25	25	na	12.5	na
at least 35%	S24h	25	25	na	na	na
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na
	O2h	na	na	na	na	na
	O3h	0.0003814	0.0003814	na	na	na
An	O6h	0.0003814	0.0003814	na	na	na
	O12h	na	na	25	na	na
	O24h	0.0003814	0.0003814	na	na	na

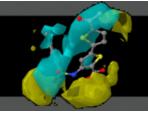



Anti-biofilm Activity of EOs

Effects of selected Foeniculum vulgare samples treatment on biofilm formation for P. aeruginosa PaO1



	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923	
	A1h	na	3.125	0.0003814	25	na	
	A2h	na	na	0.0003814	na	na	
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na	
vulgare	A6h	25	25	0.0003814	25	na	
	A12h	25	12.5	0.0003814	25	na	
The lowest	A24h	12.5	12.5	0.0003814	na	na	
concentration	S1h	na	na	0.0003814	12.5	na	
CONCENTIATION	S2h	na	na	6.25	12.5	0.78 na	
(mg/mL) of	S3h	25	25	na	12.5		
samples causing	S6h	25	25	12.5	12.5	25	
, ,	S12h	25	25	na	12.5	na	
at least 35%	S24h	25	25	na	na	na	
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na	
	O2h	na	na	na	na	na	
	O3h	0.0003814	0.0003814	na	na	na	
An	O6h	0.0003814	0.0003814	na	na	na	
	O12h	na	na	25	na	na	
	O24h	0.0003814	0.0003814	na	na	na	



Anti-biofilm Activity of EOs

	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaO1	S. aureus 6538P	S. aureus 25923	
	A1h	na	3.125	0.0003814	25	na	
	A2h	na	na	0.0003814	na	na	
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na	
vulgare	A6h	25	25	0.0003814	25	na	
	A12h	25	12.5	0.0003814	25	na	
	A24h	12.5	12.5	0.0003814	na	na	
	S1h	na	na	0.0003814	12.5	na	
	S2h	na	na	6.25	12.5	0.78	
	S3h	25	25	na	12.5	na	
	S6h	25	25	12.5	12.5	25	
	S12h	25	25	na	12.5	na	
estragole	S24h	25	25	na	na	na	
8	O1h	0.0003814	0.0003814	na	na	na	
	O2h	na	na	na	na	na	
	O3h	0.0003814	0.0003814	na	na	na	
	O6h	0.0003814	0.0003814	na	na	na	
	O12h	na	na	25	na	na	
	O24h	0.0003814	0.0003814	na	na	na	
			1				

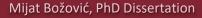
30/01/2017 89

	Sample ¹	S. epidermidis O47	S. epidermidis RP62A	P. aeruginosa PaOl	S. aureus 6538P	S. aureus 25923	
	A1h	na	3.125	0.0003814	25	na	
	A2h	na	na	0.0003814	na	na	
<u>Foeniculum</u>	A3h	25	25	0.0003814	na	na	
vulgare	A6h	25	25	0.0003814	25	na	
	A12h	25	12.5	0.0003814	25	na	
The lowest	A24h	12.5	12.5	0.0003814	na	na	
concentration	S1h	na	na	0.0003814	12.5	na	
CONCENTRATION	S2h	na	na	6.25	12.5	0.78	
(mg/mL) of	S3h	25	25	na	12.5	na	
samples causing	S6h	25	25	12.5	12.5	25	
•	S12h	25	25	na	12.5	na	
at least 35%	S24h	25	25	na	na	na	
biofilm inhibition.	O1h	0.0003814	0.0003814	na	na	na	
	O2h	na	na	na	na	na	
	O3h	0.0003814	0.0003814	na	na	na	
A.	O6h	0.0003814	0.0003814	na	na	na	
	O12h	na	na	25	na	na	
	O24h	0.0003814	0.0003814	na	na	na	

							0.08	-	July	AugustSep	otember						
			5.0	mple			0.07				1						
Name	Jlh	J2h	J3h	J6h	J12h	J24h	0.05 %				;		MIC	ng/mL		MIC r	ng/mL
3-octanol 4-terpineol	2.2 0.6	0.4 0.5	0.3 0.4	0.4	0.5 0.4	-	% 0.04 0.03	1	N.		i	Sample ¹	24h	48h	Sample ¹	24h	48h
caryophyllene cinerolone	0.3	-	1.3	2.9 2.9	2.3 5.8	-			N.Y.			A1h	na	na	S1h	na	na
crysanthenone δ -cadinene	4.4	10.5	20.3	22.7 0.6	33.9 0.8	27.3 2.4	0.01		Cir	'	_	A2h	12.48	na	S2h	6.24	12.48
d-limonene germacrene D	5.9	0.6	0.2 1.5	0.1	0.1	-	0					A3h	na	na	S3h	6.24	12.48
isocaryophyllene	-	-	-	-	-	3.8		1h	2h 3h	6h 12h	24h	A6h	na	na	S6h	6.24	na
isopiperitenone isopulegone	0.6	0.5	0.5	0.5	0.4	2.2			EXTRA	ACTION TIME		A12h	na	na	S12h	6.24	na
linalool menthone	0.3 3.1	0.8	0.2 0.6	0.4 0.6	0.5 0.5	-						A24h	na	na	S24h	12.48	12.48
methylisopulegone myrcene	0.4	-	-	-	-	12.6			diffe	erent		AM1	12.48	na	SM1	3.12	12.48
p-cymen-8-ol p-mentha-1,8-dien-3-one	-	- 0.6	0.7	0.7 1.2	1.5 2.0	2.2						AM2	12.48	12.48	SM2	3.12	12.48
p-menthene pulegone	76.8	77.7	64.3	0.2 53.2	41.1	37.7			l vie	eld		AM3	12.48	na	SM3	6.24	6.24
sabinene	0.6	- 0.5	- 0.7	- 0.8	- 1.2	-)	AM4	12.48	na	SM4	6.24	12.48
terpineo1 trans-p-mentha-2,8-dieno1 Unidentified compounds		- 7.9	- 9.0	0.8 0.2 9.5	0.1 8.1	- 11.8						AM5	na	na	SM5	6.24	na
		fere con				al									ent re ical a		
							6 0	liffe	erent	EO fr	actions	5					

Mijat Božović, PhD Dissertation

30/01/2017 91

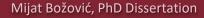


30/01/201

92

- A selection of 6 Lamiaceae and Apiaceae plant species has been analyzed leading to a conclusion that no rule can be given about the appropriate duration of steam distillation process;
- Different plant species have different EO yields, and the dynamic of oil extraction from plant material could be considered a species specific;
- Harvesting period is also very important, directly affecting these parameters: it could be more related to the plant family than to the species;

- The extraction method applied resulted in EO fractions that differ greatly in their chemical compositions;
- Although the main characterizing compounds are usually present in every fraction, variations in their amount are particularly evident between the first 3 fractions and the last ones;
- Furthermore, some compounds appear only with the development of the extraction process, and gradually increase in amount, being significantly present only in the last few fractions;
- Concerning the period of harvest, the chemical profile of an EO has been found to be heavily influenced by this factor.



 In order to monitor the biological variability, EOs of selected plant species were assayed by means of antimicrobial activity;

ON CANAN

- Having in mind the processes of synergism and antagonism between EO compounds, overall potential of the isolated oil fractions was evaluated;
- Analyses of antifungal activity have shown the significant efficacy of some samples, particularly in the case of *Mentha suaveolens*;
- Analyses of anti-biofilm activity against 5 bacterial pathogens showed S. aureus as the most resistant one, whereas 2 strains of S. epidermidis have demonstrated the highest susceptibility.

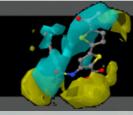
- The process duration is always dependent on what the study is conducted for;
- Prolonged and/or fractionated distillation may surely give more complete and chemically more diverse EO;
- As a delicate structure, its chemical profile can be easily altered or destroyed by adverse distillation conditions (e.g. thermal, hydrolytic), leading to the possible accumulation of artifactual formations;
- However, all of that may have a very curious effect on its biological activities: this concept has been clearly proved by our results.

RCMD Lab

Rino Ragno Antonello Mai Manuela Sabatino Francesca Borzacchi Alberto Navarra


External Collaborations Rome Stefania Garzoli (GC-MS) Federico Pepi (GC-MS) Laura Selan (Microbiology) Rosanna Papa (Microbiology) Ferrara Stefano Manfredini (Microbiology)

by www.


Herbal companies:

Minardi & Figli srl (Modena) Orto La Rocca (Sperlonga) Vivaio 98.3 (Tarquinia)

30/01/2017 96 SAPIENZA UNIVERSITA DI ROM/

Thank you! Grazie! Hvala!

> Natural habitat of the investigated species, Tarquinia countryside (Viterbo, Italy)

Mijat Božović, PhD Dissertation

30/01/2017

